

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-Diethyl 9-hydroxy-9-methyl-7phenyl-1,4-diazaspiro[4.5]decane-6,8dicarboxylate

Abel M. Maharramov, Arif I. Ismiyev, Bahruz A. Rashidov,* Gunel M. Rahimova and Mirza A. Allahverdiyev

Baku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan Correspondence e-mail: bahruz_81@mail.ru

Received 19 December 2010; accepted 28 December 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.004$ Å; disorder in main residue; R factor = 0.068; wR factor = 0.175; data-to-parameter ratio = 14.8

The title molecule, $C_{21}H_{30}N_2O_5$, is chiral with four stereogenic centres. The crystal is a racemate and consists of enantiomeric pairs with the relative configuration $rac-(6S^*, 7R^*, 8R^*, 9S^*)$. The ethyl fragment of the ethoxycarbonyl group at position 6 is disordered in a 0.46 (3):0.54 (3) ratio. The crystal structure features intermolecular N-H···O. Intramolecular O-H···N and N-H···O hydrogen bonds also occur.

Related literature

For general background to the biological activity of β -cycloketoles and their nitrogenous derivatives, see: Krivenko et al. (2003).

Experimental

Crystal data $C_{21}H_{30}N_2O_5$

 $M_r = 390.47$

Triclinic, P1	
a = 9.4140 (17) Å	
b = 10.7606 (19) Å	
c = 10.7874 (19) Å	
$\alpha = 103.000 (4)^{\circ}$	
$\beta = 97.413 \ (4)^{\circ}$	
$\gamma = 97.736 \ (4)^{\circ}$	

Data collection

Bruker APEXII CCD	8475 measured reflections
diffractometer	4252 independent reflections
Absorption correction: multi-scan	2225 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.065$
$T_{\min} = 0.983, T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	I
$wR(F^2) = 0.175$	
S = 1.00	
4252 reflections	4
288 parameters	4
45 restraints	

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5O···N4	0.87 (3)	1.87 (3)	2.714 (4)	163 (3)
$N4-H4N\cdots O2$	0.86 (4)	2.23 (4)	2.971 (4)	144 (4)
$N1 - H1N \cdot \cdot \cdot O4^{i}$	0.93 (3)	2.32 (3)	3.113 (3)	143

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2321).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Krivenko, A. P., Kozlova, E. A., Grigorev, A. V. & Sorokin, V. V. (2003). Molecules, 8, 251-255.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

V = 1040.6 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.15~\text{mm}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

7 - 2

supporting information

Acta Cryst. (2011). E67, o291 [doi:10.1107/S1600536810054498]

rac-Diethyl 9-hydroxy-9-methyl-7-phenyl-1,4-diazaspiro[4.5]decane-6,8-dicarboxylate

Abel M. Maharramov, Arif I. Ismiyev, Bahruz A. Rashidov, Gunel M. Rahimova and Mirza A. Allahverdiyev

S1. Comment

Established that β -cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity (Krivenko *et al.* 2003). The reactions of β -cycloketoles with ethilendiamine possibly leading to valuable compounds of practical use remain unexplored. Reaction β -cycloketoles with ethilendiamine has not been studied. Several reaction paths may be expected: one or two reactive centers of the substrate and reagent may be involved. Enamines or the products of heterocyclization or spirocyclization may be produced.

In the title compound, $C_{21}H_{30}N_2O_5$ (I), the cyclohexane ring adopts a chair conformation. The structure of (I) is reported here (Fig. 1). The crystal structure involves N—H···O intermolecular and O—H···N and N—H···O intramolecular hydrogen bonds. (Table 1 and Fig. 2).

The cyclohexane ring has a chair conformation. The phenyl ring is in a pseudo-equatorial position. Torsion angle between the ethoxycarbonyl group and the phenyl substituent is C14—C7—C8—C20 is 55.4 (3) ° and C11—C6—C7—C14 is -53.4 (3) °, which indicates the pseudo-axial location of hydrogen atoms at C6 C7 and C8.

The imidazolidine ring has a envelope conformation. The fragment of a ring N1—C2—C3—N4 is almost planar - torsion angle is -6.9 (3) $^{\circ}$.

The molecules (I) are diastereomers and possess three asymmetric centers at th C6, C7, C8 and C9 carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration of the centers of *rac-6S**, *7R**, δR^* , θS^* . The two [(C7(R), C8(R)] of four stereogenic centres of (I) are of the same chirality.

S2. Experimental

(rac)-diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), ethilendiamine (20 mmol) were dissolved in 20 ml e thanol. The mixture was stirred at 345–350 K within 10 h. After cooling to a room temperature obtained white crystals. The crystals were filtered and washed with ethanol and have been then dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals of the title compound.

S3. Refinement

The hydrogen atoms of the NH and OH-groups (I) molecule were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃-group and $U_{iso}(H) = 1.2U_{eq}(N)$ for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figure 1

The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Figure 2

The hydrogen-bonded (dashed lines) packing in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.

rac-Diethyl 9-hydroxy-9-methyl-7-phenyl-1,4-diazaspiro[4.5]decane-6,8-dicarboxylate

Crystal data

 $C_{21}H_{30}N_2O_5$ $M_r = 390.47$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.4140 (17) Å b = 10.7606 (19) Å c = 10.7874 (19) Å $a = 103.000 (4)^{\circ}$ $\beta = 97.413 (4)^{\circ}$ $\gamma = 97.736 (4)^{\circ}$ $V = 1040.6 (3) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.983, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.175$ S = 1.004252 reflections Z = 2 F(000) = 420 $D_x = 1.246 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1499 reflections $\theta = 2.4-26.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Prism, colorless $0.20 \times 0.20 \times 0.15 \text{ mm}$

8475 measured reflections 4252 independent reflections 2225 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 12$ $l = -13 \rightarrow 13$

288 parameters
45 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.070P)^2]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	v	Z	Uiso*/Uea	Occ. (<1)
01	0 3602 (2)	0 2303 (2)	0.8120 (2)	0.0732 (7)	
02	0.36432(19)	0.2303(2) 0.2704(2)	0.6120(2) 0.61942(18)	0.0567 (6)	
03	0.91777(17)	0.2761(2) 0.3860(2)	0.62626(17)	0.0562 (6)	
04	1.06405(19)	0.3000(2) 0.4465(3)	0.8161(2)	0.0302(0) 0.0732(7)	
05	0 7805 (2)	0.6254(2)	0.68461(18)	0.0491(5)	
H5O	0.688(3)	0.523 + (2) 0.594 (3)	0.660 (3)	0.058 (9)*	
N1	0.3905(2)	0.557(3)	0.8533(2)	0.0424 (6)	
HIN	0.315(3)	0.499(3)	0.833(3)	0.050 (8)*	
C2	0.3457 (3)	0.6699 (3)	0.7935 (3)	0.0564 (8)	
H2A	0.3883	0.7548	0.8481	0.068*	
H2B	0.2407	0.6629	0.7811	0.068*	
C3	0.3994 (3)	0.6504 (3)	0.6627 (3)	0.0560 (8)	
H3A	0.3178	0.6241	0.5923	0.067*	
H3B	0.4564	0.7299	0.6558	0.067*	
N4	0.4897 (2)	0.5477 (3)	0.6591 (2)	0.0429 (6)	
H4N	0.441 (3)	0.474 (3)	0.615 (3)	0.066 (11)*	
C5	0.5167 (2)	0.5335 (3)	0.7942 (2)	0.0364 (7)	
C6	0.5414 (2)	0.3967 (3)	0.8005 (2)	0.0355 (6)	
H6A	0.5591	0.3945	0.8915	0.043*	
C7	0.6766 (2)	0.3630(2)	0.7404 (2)	0.0342 (6)	
H7A	0.6592	0.3675	0.6501	0.041*	
C8	0.8119 (2)	0.4630 (3)	0.8092 (2)	0.0376 (6)	
H8A	0.8285	0.4572	0.8991	0.045*	
C9	0.7911 (2)	0.6047 (3)	0.8112 (2)	0.0411 (7)	
C10	0.6525 (2)	0.6281 (3)	0.8664 (2)	0.0406 (7)	
H10A	0.6666	0.6229	0.9556	0.049*	
H10B	0.6369	0.7152	0.8654	0.049*	
C11	0.4127 (2)	0.2941 (3)	0.7330 (3)	0.0412 (7)	
C12	0.256 (2)	0.1166 (13)	0.7402 (10)	0.112 (8)	0.46 (3)
H12A	0.3007	0.0637	0.6758	0.134*	0.46 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H12B	0.1726	0.1422	0.6967	0.134*	0.46 (3)
C13	0.210 (3)	0.0405 (15)	0.8359 (14)	0.132 (8)	0.46 (3)
H13A	0.2952	0.0263	0.8869	0.198*	0.46 (3)
H13B	0.1529	-0.0413	0.7897	0.198*	0.46 (3)
H13C	0.1541	0.0886	0.8912	0.198*	0.46 (3)
C12′	0.2401 (8)	0.1223 (6)	0.7744 (17)	0.094 (4)	0.54 (3)
H12C	0.2007	0.1075	0.6837	0.112*	0.54 (3)
H12D	0.1634	0.1405	0.8243	0.112*	0.54 (3)
C13′	0.299 (2)	0.0036 (7)	0.800(2)	0.135 (7)	0.54 (3)
H13D	0.3728	-0.0150	0.7481	0.203*	0.54 (3)
H13E	0.2214	-0.0692	0.7781	0.203*	0.54 (3)
H13F	0.3400	0.0202	0.8894	0.203*	0.54 (3)
C14	0.6973 (2)	0.2259 (3)	0.7422 (2)	0.0410 (7)	
C15	0.6688 (3)	0.1281 (3)	0.6296 (3)	0.0551 (8)	
H15A	0.6359	0.1469	0.5519	0.066*	
C16	0.6883 (4)	0.0033 (3)	0.6304 (4)	0.0686 (10)	
H16A	0.6686	-0.0605	0.5534	0.082*	
C17	0.7361 (4)	-0.0276 (4)	0.7424 (4)	0.0756 (11)	
H17A	0.7496	-0.1116	0.7422	0.091*	
C18	0.7639 (4)	0.0667 (4)	0.8552 (4)	0.0831 (12)	
H18A	0.7956	0.0461	0.9322	0.100*	
C19	0.7453 (3)	0.1934 (3)	0.8562 (3)	0.0623 (9)	
H19A	0.7651	0.2565	0.9337	0.075*	
C20	0.9451 (3)	0.4310 (3)	0.7527 (3)	0.0441 (7)	
C21	1.0367 (3)	0.3475 (3)	0.5612 (3)	0.0775 (11)	
H21A	1.1162	0.3383	0.6235	0.093*	
H21B	1.0721	0.4128	0.5184	0.093*	
C22	0.9815 (4)	0.2206 (4)	0.4639 (4)	0.1019 (15)	
H22A	1.0557	0.1982	0.4138	0.153*	
H22B	0.8969	0.2282	0.4079	0.153*	
H22C	0.9568	0.1544	0.5078	0.153*	
C23	0.9203 (3)	0.7006 (3)	0.8929 (3)	0.0595 (9)	
H23A	0.8995	0.7868	0.9026	0.089*	
H23B	1.0042	0.6927	0.8515	0.089*	
H23C	0.9391	0.6829	0.9762	0.089*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
01	0.0710 (13)	0.0810 (19)	0.0586 (13)	-0.0124 (13)	0.0097 (11)	0.0138 (13)
O2	0.0493 (11)	0.0633 (15)	0.0474 (12)	0.0136 (10)	-0.0061 (9)	-0.0016 (10)
03	0.0418 (10)	0.0800 (16)	0.0534 (12)	0.0329 (10)	0.0173 (9)	0.0114 (11)
O4	0.0328 (10)	0.102 (2)	0.0834 (15)	0.0261 (11)	-0.0001 (10)	0.0167 (14)
05	0.0466 (11)	0.0612 (15)	0.0510 (11)	0.0233 (10)	0.0172 (9)	0.0243 (10)
N1	0.0373 (12)	0.0513 (16)	0.0436 (12)	0.0239 (11)	0.0130 (10)	0.0089 (12)
C2	0.0543 (16)	0.057 (2)	0.0702 (19)	0.0360 (15)	0.0194 (14)	0.0199 (16)
C3	0.0556 (16)	0.065 (2)	0.0602 (18)	0.0365 (16)	0.0065 (14)	0.0272 (17)
N4	0.0445 (12)	0.0558 (18)	0.0309 (11)	0.0248 (12)	0.0012 (10)	0.0092 (12)

C5	0.0333 (12)	0.0494 (18)	0.0289 (12)	0.0223 (12)	0.0066 (10)	0.0048 (12)
C6	0.0328 (12)	0.0468 (17)	0.0287 (12)	0.0189 (11)	0.0048 (10)	0.0060 (12)
C7	0.0347 (12)	0.0427 (17)	0.0283 (12)	0.0194 (11)	0.0038 (10)	0.0080 (11)
C8	0.0344 (12)	0.0480 (18)	0.0330 (13)	0.0178 (12)	0.0033 (10)	0.0104 (12)
C9	0.0373 (13)	0.0495 (18)	0.0394 (14)	0.0176 (12)	0.0062 (11)	0.0109 (13)
C10	0.0411 (13)	0.0472 (18)	0.0348 (13)	0.0206 (12)	0.0053 (11)	0.0057 (12)
C11	0.0345 (12)	0.0481 (19)	0.0409 (15)	0.0189 (12)	0.0089 (12)	0.0020 (14)
C12	0.108 (9)	0.134 (15)	0.063 (8)	-0.066 (9)	0.013 (6)	0.011 (7)
C13	0.190 (18)	0.095 (11)	0.097 (8)	-0.027 (11)	0.049 (9)	0.012 (8)
C12′	0.117 (8)	0.091 (9)	0.059 (6)	-0.032 (7)	0.021 (6)	0.018 (5)
C13′	0.158 (12)	0.082 (8)	0.148 (13)	-0.023 (7)	-0.012 (9)	0.036 (9)
C14	0.0328 (12)	0.0499 (18)	0.0425 (14)	0.0192 (12)	0.0078 (11)	0.0080 (13)
C15	0.0654 (18)	0.055 (2)	0.0471 (16)	0.0271 (15)	0.0097 (14)	0.0066 (15)
C16	0.082 (2)	0.052 (2)	0.072 (2)	0.0242 (18)	0.0210 (18)	0.0047 (19)
C17	0.087 (2)	0.049 (2)	0.103 (3)	0.0321 (19)	0.022 (2)	0.027 (2)
C18	0.107 (3)	0.078 (3)	0.077 (3)	0.040 (2)	0.003 (2)	0.039 (2)
C19	0.084 (2)	0.058 (2)	0.0484 (17)	0.0287 (18)	-0.0020 (15)	0.0175 (16)
C20	0.0327 (13)	0.0464 (18)	0.0576 (17)	0.0181 (12)	0.0078 (12)	0.0150 (14)
C21	0.0517 (17)	0.095 (3)	0.096 (3)	0.0381 (18)	0.0391 (17)	0.012 (2)
C22	0.078 (2)	0.111 (4)	0.109 (3)	0.032 (2)	0.045 (2)	-0.014 (3)
C23	0.0449 (15)	0.057 (2)	0.073 (2)	0.0142 (14)	0.0044 (14)	0.0068 (17)

Geometric parameters (Å, °)

01—C11	1.312 (4)	C10—H10B	0.9700
O1—C12	1.452 (3)	C12—C13	1.524 (3)
O1—C12′	1.452 (3)	C12—H12A	0.9700
O2—C11	1.207 (3)	C12—H12B	0.9700
O3—C20	1.319 (3)	C13—H13A	0.9600
O3—C21	1.454 (2)	C13—H13B	0.9600
O4—C20	1.204 (3)	C13—H13C	0.9600
О5—С9	1.426 (3)	C12′—C13′	1.525 (3)
O5—H5O	0.87 (3)	C12′—H12C	0.9700
N1—C2	1.469 (4)	C12′—H12D	0.9700
N1—C5	1.472 (3)	C13′—H13D	0.9600
N1—H1N	0.93 (3)	C13′—H13E	0.9600
C2—C3	1.539 (4)	C13'—H13F	0.9600
C2—H2A	0.9700	C14—C15	1.385 (4)
C2—H2B	0.9700	C14—C19	1.390 (4)
C3—N4	1.479 (3)	C15—C16	1.382 (5)
С3—НЗА	0.9700	C15—H15A	0.9300
С3—Н3В	0.9700	C16—C17	1.361 (5)
N4—C5	1.491 (3)	C16—H16A	0.9300
N4—H4N	0.86 (3)	C17—C18	1.367 (5)
C5—C10	1.521 (4)	C17—H17A	0.9300
C5—C6	1.536 (4)	C18—C19	1.395 (5)
C6—C11	1.507 (4)	C18—H18A	0.9300
С6—С7	1.550 (3)	C19—H19A	0.9300

С6—Н6А	0.9800	C21—C22	1.503 (3)
C7—C14	1.518 (4)	C21—H21A	0.9700
С7—С8	1.536 (3)	C21—H21B	0.9700
C7—H7A	0.9800	C22—H22A	0.9600
C8—C20	1.511 (3)	C22—H22B	0.9600
C8—C9	1.558 (4)	C22—H22C	0.9600
C8—H8A	0.9800	C23—H23A	0.9600
C9—C23	1.515 (4)	C23—H23B	0.9600
C9—C10	1.531 (3)	C23—H23C	0.9600
C10—H10A	0.9700	025 11250	0.9000
C11—O1—C12	110.4 (5)	O2—C11—C6	124.7 (3)
C11—O1—C12′	124.8 (8)	O1—C11—C6	111.8 (2)
C12—O1—C12′	16.3 (9)	O1—C12—C13	107.8 (3)
C20—O3—C21	117.9 (2)	O1—C12—H12A	110.2
С9—О5—Н5О	97 (2)	C13—C12—H12A	110.2
C2—N1—C5	104.2 (2)	O1—C12—H12B	110.2
C2—N1—H1N	108.9 (19)	C13—C12—H12B	110.2
C5—N1—H1N	111.4 (16)	H12A—C12—H12B	108.5
N1—C2—C3	107.0 (2)	O1—C12′—C13′	107.4 (3)
N1—C2—H2A	110.3	01—C12′—H12C	110.2
C3—C2—H2A	110.3	C13'—C12'—H12C	110.2
N1—C2—H2B	110.3	01—C12′—H12D	110.2
C3—C2—H2B	110.3	C13'—C12'—H12D	110.2
$H_2A - C_2 - H_2B$	108.6	H12C-C12'-H12D	108.5
N4—C3—C2	105.8 (2)	C12'—C13'—H13D	109.5
N4—C3—H3A	110.6	C12'—C13'—H13E	109.5
C2—C3—H3A	110.6	H13D—C13′—H13E	109.5
N4—C3—H3B	110.6	C12'—C13'—H13F	109.5
C2—C3—H3B	110.6	H13D—C13′—H13F	109.5
H3A—C3—H3B	108.7	H13E—C13′—H13F	109.5
C3—N4—C5	105.42 (19)	C15—C14—C19	117.4 (3)
C3—N4—H4N	111 (2)	C15—C14—C7	121.0(2)
C5—N4—H4N	105 (2)	C19 - C14 - C7	121.6(2)
N1-C5-N4	106 77 (18)	C_{16} $-C_{15}$ $-C_{14}$	121.3(2)
N1-C5-C10	109.25 (19)	C16—C15—H15A	119.3
N4—C5—C10	108.6 (2)	C14—C15—H15A	119.3
N1-C5-C6	111.7(2)	C17-C16-C15	120.9 (3)
N4—C5—C6	112.5(2)	C17—C16—H16A	119.6
C10-C5-C6	107.91 (19)	C15—C16—H16A	119.6
$C_{11} - C_{6} - C_{5}$	112 78 (19)	C_{16} $-C_{17}$ $-C_{18}$	119.1 (3)
$C_{11} - C_{6} - C_{7}$	108 50 (18)	C_{16} C_{17} H_{17A}	120.4
$C_{5}-C_{6}-C_{7}$	110.9(2)	C18 - C17 - H17A	120.1
C_{11} C_{6} H_{6A}	108.2	C17 - C18 - C19	120.1
C5—C6—H6A	108.2	C17—C18—H18A	119.6
C7—C6—H6A	108.2	C19-C18-H18A	119.6
$C_{14} - C_{7} - C_{8}$	112 20 (19)	C14— $C19$ — $C18$	120 4 (3)
C_{14} C_{7} C_{6}	110.7 (2)	C14 - C19 - H194	119.8
	110.7 (2)		117.0

C8—C7—C6	110.38 (18)	C18—C19—H19A	119.8
С14—С7—Н7А	107.8	O4—C20—O3	123.6 (2)
С8—С7—Н7А	107.8	O4—C20—C8	123.6 (3)
С6—С7—Н7А	107.8	O3—C20—C8	112.8 (2)
C20—C8—C7	111.2 (2)	O3—C21—C22	108.4 (2)
C20—C8—C9	111.4 (2)	O3—C21—H21A	110.0
С7—С8—С9	112.87 (18)	C22—C21—H21A	110.0
C20—C8—H8A	107.0	O3—C21—H21B	110.0
С7—С8—Н8А	107.0	C22—C21—H21B	110.0
С9—С8—Н8А	107.0	H21A—C21—H21B	108.4
O5—C9—C23	106.6 (2)	C21—C22—H22A	109.5
O5—C9—C10	110.33 (19)	C21—C22—H22B	109.5
C23—C9—C10	110.1 (2)	H22A—C22—H22B	109.5
O5—C9—C8	110.8 (2)	C21—C22—H22C	109.5
C23—C9—C8	110.9 (2)	H22A—C22—H22C	109.5
С10—С9—С8	108.1 (2)	H22B—C22—H22C	109.5
C5—C10—C9	114.35 (19)	C9—C23—H23A	109.5
C5-C10-H10A	108.7	C9—C23—H23B	109.5
C9—C10—H10A	108.7	H23A—C23—H23B	109.5
C5—C10—H10B	108.7	C9—C23—H23C	109.5
C9—C10—H10B	108.7	H23A—C23—H23C	109.5
H10A—C10—H10B	107.6	H23B—C23—H23C	109.5
O2—C11—O1	123.4 (3)		
C5—N1—C2—C3	24.6 (3)	C23—C9—C10—C5	-177.9 (2)
N1—C2—C3—N4	-6.9 (3)	C8—C9—C10—C5	-56.6 (3)
C2-C3-N4-C5	-13.4 (3)	C12—O1—C11—O2	9.9 (12)
C2—N1—C5—N4	-33.6 (3)	C12′—O1—C11—O2	1.2 (6)
C2—N1—C5—C10	83.7 (3)	C12—O1—C11—C6	-168.6 (11)
C2—N1—C5—C6	-157.0 (2)	C12′—O1—C11—C6	-177.4 (5)
C3—N4—C5—N1	29.4 (3)	C5-C6-C11-O2	61.6 (3)
C3—N4—C5—C10	-88.3 (2)	C7—C6—C11—O2	-61.6 (3)
C3—N4—C5—C6	152.3 (2)	C5-C6-C11-O1	-119.8 (2)
N1-C5-C6-C11	59.3 (3)	C7—C6—C11—O1	116.9 (2)
N4—C5—C6—C11	-60.8 (3)	C11—O1—C12—C13	175 (2)
C10-C5-C6-C11	179.39 (18)	C12′—O1—C12—C13	-32 (3)
N1—C5—C6—C7	-178.81 (18)	C11—O1—C12′—C13′	116.7 (18)
N4—C5—C6—C7	61.1 (2)	C12—O1—C12′—C13′	86 (4)
C10—C5—C6—C7	-58.7 (2)	C8—C7—C14—C15	-128.3(2)
C11—C6—C7—C14	-53.4 (3)	C6—C7—C14—C15	107.9 (3)
C5—C6—C7—C14	-177.81 (19)	C8—C7—C14—C19	51.7 (3)
C11—C6—C7—C8	-178.3 (2)	C6—C7—C14—C19	-72.1 (3)
C5—C6—C7—C8	57.3 (3)	C19—C14—C15—C16	-0.5 (4)
C14—C7—C8—C20	55.4 (3)	C7—C14—C15—C16	179.6 (3)
C6—C7—C8—C20	179.4 (2)	C14—C15—C16—C17	0.1 (5)
C14—C7—C8—C9	-178.55 (19)	C15—C16—C17—C18	0.4 (5)
C6—C7—C8—C9	-54.5 (3)	C16—C17—C18—C19	-0.6 (6)
C20—C8—C9—O5	57.6 (3)	C15—C14—C19—C18	0.2 (5)

supporting information

C7—C8—C9—O5	-68.3(2)	C7—C14—C19—C18	-179.8(3)
C20-C8-C9-C23	-60.6 (3)	C17—C18—C19—C14	0.3 (6)
C7—C8—C9—C23	173.5 (2)	C21—O3—C20—O4	3.1 (4)
C20-C8-C9-C10	178.6 (2)	C21—O3—C20—C8	-177.9 (2)
C7—C8—C9—C10	52.7 (3)	C7—C8—C20—O4	-142.5 (3)
N1-C5-C10-C9	-178.1 (2)	C9—C8—C20—O4	90.6 (3)
N4—C5—C10—C9	-62.0 (3)	C7—C8—C20—O3	38.5 (3)
C6—C5—C10—C9	60.2 (3)	C9—C8—C20—O3	-88.4 (3)
O5—C9—C10—C5	64.7 (3)	C20—O3—C21—C22	135.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H··· <i>A</i>	D····A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>O</i> …N4	0.87 (3)	1.87 (3)	2.714 (4)	163 (3)
N4—H4 <i>N</i> ···O2	0.86 (4)	2.23 (4)	2.971 (4)	144 (4)
N1—H1 <i>N</i> ···O4 ⁱ	0.93 (3)	2.32 (3)	3.113 (3)	143

Symmetry code: (i) x-1, y, z.