organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­ethyl 9-hy­dr­oxy-9-methyl-7-phenyl-1,4-di­aza­spiro­[4.5]decane-6,8-di­carboxyl­ate

aBaku State University, Z. Khalilov St. 23, Baku, AZ-1148, Azerbaijan
*Correspondence e-mail: bahruz_81@mail.ru

(Received 19 December 2010; accepted 28 December 2010; online 8 January 2011)

The title mol­ecule, C21H30N2O5, is chiral with four stereogenic centres. The crystal is a racemate and consists of enanti­omeric pairs with the relative configuration rac-(6S*,7R*,8R*,9S*). The ethyl fragment of the eth­oxy­carbonyl group at position 6 is disordered in a 0.46 (3):0.54 (3) ratio. The crystal structure features inter­molecular N—H⋯O. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds also occur.

Related literature

For general background to the biological activity of β-cyclo­ketoles and their nitro­genous derivatives, see: Krivenko et al. (2003[Krivenko, A. P., Kozlova, E. A., Grigorev, A. V. & Sorokin, V. V. (2003). Molecules, 8, 251-255.]).

[Scheme 1]

Experimental

Crystal data
  • C21H30N2O5

  • Mr = 390.47

  • Triclinic, [P \overline 1]

  • a = 9.4140 (17) Å

  • b = 10.7606 (19) Å

  • c = 10.7874 (19) Å

  • α = 103.000 (4)°

  • β = 97.413 (4)°

  • γ = 97.736 (4)°

  • V = 1040.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.987

  • 8475 measured reflections

  • 4252 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.175

  • S = 1.00

  • 4252 reflections

  • 288 parameters

  • 45 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯N4 0.87 (3) 1.87 (3) 2.714 (4) 163 (3)
N4—H4N⋯O2 0.86 (4) 2.23 (4) 2.971 (4) 144 (4)
N1—H1N⋯O4i 0.93 (3) 2.32 (3) 3.113 (3) 143
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Established that β-cycloketoles and their nitrogenous derivatives possess a wide spectrum of biological activity (Krivenko et al. 2003). The reactions of β-cycloketoles with ethilendiamine possibly leading to valuable compounds of practical use remain unexplored. Reaction β-cycloketoles with ethilendiamine has not been studied. Several reaction paths may be expected: one or two reactive centers of the substrate and reagent may be involved. Enamines or the products of heterocyclization or spirocyclization may be produced.

In the title compound, C21H30N2O5 (I), the cyclohexane ring adopts a chair conformation. The structure of (I) is reported here (Fig. 1). The crystal structure involves N—H···O intermolecular and O—H···N and N—H···O intramolecular hydrogen bonds. (Table 1 and Fig. 2).

The cyclohexane ring has a chair conformation. The phenyl ring is in a pseudo-equatorial position. Torsion angle between the ethoxycarbonyl group and the phenyl substituent is C14—C7—C8—C20 is 55.4 (3) ° and C11—C6—C7—C14 is -53.4 (3) °, which indicates the pseudo-axial location of hydrogen atoms at C6 C7 and C8.

THe imidazolidine ring has a envelope conformation. The fragment of a ring N1—C2—C3—N4 is almost planar - torsion angle is -6.9 (3) °.

The molecules (I) are diastereomers and possess three asymmetric centers at th C6, C7, C8 and C9 carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration of the centers of rac-6S*,7R*, 8R*, 9S*.The two [(C7(R),C8(R)] of four stereogenic centres of (I) are of the same chirality.

Related literature top

For general background to the biological activity of β-cycloketoles and their nitrogenous derivatives, see: Krivenko et al. (2003).

Experimental top

(rac)-diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), ethilendiamine (20 mmol) were dissolved in 20 ml e thanol. The mixture was stirred at 345–350 K within 10 h. After cooling to a room temperature obtained white crystals. The crystals were filtered and washed with ethanol and have been then dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals of the title compound.

Refinement top

The hydrogen atoms of the NH and OH-groups (I) molecule were localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded (dashed lines) packing in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.
rac-Diethyl 9-hydroxy-9-methyl-7-phenyl-1,4-diazaspiro[4.5]decane-6,8-dicarboxylate top
Crystal data top
C21H30N2O5Z = 2
Mr = 390.47F(000) = 420
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4140 (17) ÅCell parameters from 1499 reflections
b = 10.7606 (19) Åθ = 2.4–26.3°
c = 10.7874 (19) ŵ = 0.09 mm1
α = 103.000 (4)°T = 296 K
β = 97.413 (4)°Prism, colorless
γ = 97.736 (4)°0.20 × 0.20 × 0.15 mm
V = 1040.6 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4252 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.983, Tmax = 0.987k = 1312
8475 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: difference Fourier map
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
4252 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.30 e Å3
45 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H30N2O5γ = 97.736 (4)°
Mr = 390.47V = 1040.6 (3) Å3
Triclinic, P1Z = 2
a = 9.4140 (17) ÅMo Kα radiation
b = 10.7606 (19) ŵ = 0.09 mm1
c = 10.7874 (19) ÅT = 296 K
α = 103.000 (4)°0.20 × 0.20 × 0.15 mm
β = 97.413 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2225 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.987Rint = 0.065
8475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06845 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
4252 reflectionsΔρmin = 0.25 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3602 (2)0.2303 (2)0.8120 (2)0.0732 (7)
O20.36432 (19)0.2704 (2)0.61942 (18)0.0567 (6)
O30.91777 (17)0.3860 (2)0.62626 (17)0.0562 (6)
O41.06405 (19)0.4465 (3)0.8161 (2)0.0732 (7)
O50.7805 (2)0.6254 (2)0.68461 (18)0.0491 (5)
H5O0.688 (3)0.594 (3)0.660 (3)0.058 (9)*
N10.3905 (2)0.5684 (3)0.8533 (2)0.0424 (6)
H1N0.315 (3)0.499 (3)0.833 (3)0.050 (8)*
C20.3457 (3)0.6699 (3)0.7935 (3)0.0564 (8)
H2A0.38830.75480.84810.068*
H2B0.24070.66290.78110.068*
C30.3994 (3)0.6504 (3)0.6627 (3)0.0560 (8)
H3A0.31780.62410.59230.067*
H3B0.45640.72990.65580.067*
N40.4897 (2)0.5477 (3)0.6591 (2)0.0429 (6)
H4N0.441 (3)0.474 (3)0.615 (3)0.066 (11)*
C50.5167 (2)0.5335 (3)0.7942 (2)0.0364 (7)
C60.5414 (2)0.3967 (3)0.8005 (2)0.0355 (6)
H6A0.55910.39450.89150.043*
C70.6766 (2)0.3630 (2)0.7404 (2)0.0342 (6)
H7A0.65920.36750.65010.041*
C80.8119 (2)0.4630 (3)0.8092 (2)0.0376 (6)
H8A0.82850.45720.89910.045*
C90.7911 (2)0.6047 (3)0.8112 (2)0.0411 (7)
C100.6525 (2)0.6281 (3)0.8664 (2)0.0406 (7)
H10A0.66660.62290.95560.049*
H10B0.63690.71520.86540.049*
C110.4127 (2)0.2941 (3)0.7330 (3)0.0412 (7)
C120.256 (2)0.1166 (13)0.7402 (10)0.112 (8)0.46 (3)
H12A0.30070.06370.67580.134*0.46 (3)
H12B0.17260.14220.69670.134*0.46 (3)
C130.210 (3)0.0405 (15)0.8359 (14)0.132 (8)0.46 (3)
H13A0.29520.02630.88690.198*0.46 (3)
H13B0.15290.04130.78970.198*0.46 (3)
H13C0.15410.08860.89120.198*0.46 (3)
C12'0.2401 (8)0.1223 (6)0.7744 (17)0.094 (4)0.54 (3)
H12C0.20070.10750.68370.112*0.54 (3)
H12D0.16340.14050.82430.112*0.54 (3)
C13'0.299 (2)0.0036 (7)0.800 (2)0.135 (7)0.54 (3)
H13D0.37280.01500.74810.203*0.54 (3)
H13E0.22140.06920.77810.203*0.54 (3)
H13F0.34000.02020.88940.203*0.54 (3)
C140.6973 (2)0.2259 (3)0.7422 (2)0.0410 (7)
C150.6688 (3)0.1281 (3)0.6296 (3)0.0551 (8)
H15A0.63590.14690.55190.066*
C160.6883 (4)0.0033 (3)0.6304 (4)0.0686 (10)
H16A0.66860.06050.55340.082*
C170.7361 (4)0.0276 (4)0.7424 (4)0.0756 (11)
H17A0.74960.11160.74220.091*
C180.7639 (4)0.0667 (4)0.8552 (4)0.0831 (12)
H18A0.79560.04610.93220.100*
C190.7453 (3)0.1934 (3)0.8562 (3)0.0623 (9)
H19A0.76510.25650.93370.075*
C200.9451 (3)0.4310 (3)0.7527 (3)0.0441 (7)
C211.0367 (3)0.3475 (3)0.5612 (3)0.0775 (11)
H21A1.11620.33830.62350.093*
H21B1.07210.41280.51840.093*
C220.9815 (4)0.2206 (4)0.4639 (4)0.1019 (15)
H22A1.05570.19820.41380.153*
H22B0.89690.22820.40790.153*
H22C0.95680.15440.50780.153*
C230.9203 (3)0.7006 (3)0.8929 (3)0.0595 (9)
H23A0.89950.78680.90260.089*
H23B1.00420.69270.85150.089*
H23C0.93910.68290.97620.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0710 (13)0.0810 (19)0.0586 (13)0.0124 (13)0.0097 (11)0.0138 (13)
O20.0493 (11)0.0633 (15)0.0474 (12)0.0136 (10)0.0061 (9)0.0016 (10)
O30.0418 (10)0.0800 (16)0.0534 (12)0.0329 (10)0.0173 (9)0.0114 (11)
O40.0328 (10)0.102 (2)0.0834 (15)0.0261 (11)0.0001 (10)0.0167 (14)
O50.0466 (11)0.0612 (15)0.0510 (11)0.0233 (10)0.0172 (9)0.0243 (10)
N10.0373 (12)0.0513 (16)0.0436 (12)0.0239 (11)0.0130 (10)0.0089 (12)
C20.0543 (16)0.057 (2)0.0702 (19)0.0360 (15)0.0194 (14)0.0199 (16)
C30.0556 (16)0.065 (2)0.0602 (18)0.0365 (16)0.0065 (14)0.0272 (17)
N40.0445 (12)0.0558 (18)0.0309 (11)0.0248 (12)0.0012 (10)0.0092 (12)
C50.0333 (12)0.0494 (18)0.0289 (12)0.0223 (12)0.0066 (10)0.0048 (12)
C60.0328 (12)0.0468 (17)0.0287 (12)0.0189 (11)0.0048 (10)0.0060 (12)
C70.0347 (12)0.0427 (17)0.0283 (12)0.0194 (11)0.0038 (10)0.0080 (11)
C80.0344 (12)0.0480 (18)0.0330 (13)0.0178 (12)0.0033 (10)0.0104 (12)
C90.0373 (13)0.0495 (18)0.0394 (14)0.0176 (12)0.0062 (11)0.0109 (13)
C100.0411 (13)0.0472 (18)0.0348 (13)0.0206 (12)0.0053 (11)0.0057 (12)
C110.0345 (12)0.0481 (19)0.0409 (15)0.0189 (12)0.0089 (12)0.0020 (14)
C120.108 (9)0.134 (15)0.063 (8)0.066 (9)0.013 (6)0.011 (7)
C130.190 (18)0.095 (11)0.097 (8)0.027 (11)0.049 (9)0.012 (8)
C12'0.117 (8)0.091 (9)0.059 (6)0.032 (7)0.021 (6)0.018 (5)
C13'0.158 (12)0.082 (8)0.148 (13)0.023 (7)0.012 (9)0.036 (9)
C140.0328 (12)0.0499 (18)0.0425 (14)0.0192 (12)0.0078 (11)0.0080 (13)
C150.0654 (18)0.055 (2)0.0471 (16)0.0271 (15)0.0097 (14)0.0066 (15)
C160.082 (2)0.052 (2)0.072 (2)0.0242 (18)0.0210 (18)0.0047 (19)
C170.087 (2)0.049 (2)0.103 (3)0.0321 (19)0.022 (2)0.027 (2)
C180.107 (3)0.078 (3)0.077 (3)0.040 (2)0.003 (2)0.039 (2)
C190.084 (2)0.058 (2)0.0484 (17)0.0287 (18)0.0020 (15)0.0175 (16)
C200.0327 (13)0.0464 (18)0.0576 (17)0.0181 (12)0.0078 (12)0.0150 (14)
C210.0517 (17)0.095 (3)0.096 (3)0.0381 (18)0.0391 (17)0.012 (2)
C220.078 (2)0.111 (4)0.109 (3)0.032 (2)0.045 (2)0.014 (3)
C230.0449 (15)0.057 (2)0.073 (2)0.0142 (14)0.0044 (14)0.0068 (17)
Geometric parameters (Å, º) top
O1—C111.312 (4)C10—H10B0.9700
O1—C121.452 (3)C12—C131.524 (3)
O1—C12'1.452 (3)C12—H12A0.9700
O2—C111.207 (3)C12—H12B0.9700
O3—C201.319 (3)C13—H13A0.9600
O3—C211.454 (2)C13—H13B0.9600
O4—C201.204 (3)C13—H13C0.9600
O5—C91.426 (3)C12'—C13'1.525 (3)
O5—H5O0.87 (3)C12'—H12C0.9700
N1—C21.469 (4)C12'—H12D0.9700
N1—C51.472 (3)C13'—H13D0.9600
N1—H1N0.93 (3)C13'—H13E0.9600
C2—C31.539 (4)C13'—H13F0.9600
C2—H2A0.9700C14—C151.385 (4)
C2—H2B0.9700C14—C191.390 (4)
C3—N41.479 (3)C15—C161.382 (5)
C3—H3A0.9700C15—H15A0.9300
C3—H3B0.9700C16—C171.361 (5)
N4—C51.491 (3)C16—H16A0.9300
N4—H4N0.86 (3)C17—C181.367 (5)
C5—C101.521 (4)C17—H17A0.9300
C5—C61.536 (4)C18—C191.395 (5)
C6—C111.507 (4)C18—H18A0.9300
C6—C71.550 (3)C19—H19A0.9300
C6—H6A0.9800C21—C221.503 (3)
C7—C141.518 (4)C21—H21A0.9700
C7—C81.536 (3)C21—H21B0.9700
C7—H7A0.9800C22—H22A0.9600
C8—C201.511 (3)C22—H22B0.9600
C8—C91.558 (4)C22—H22C0.9600
C8—H8A0.9800C23—H23A0.9600
C9—C231.515 (4)C23—H23B0.9600
C9—C101.531 (3)C23—H23C0.9600
C10—H10A0.9700
C11—O1—C12110.4 (5)O2—C11—C6124.7 (3)
C11—O1—C12'124.8 (8)O1—C11—C6111.8 (2)
C12—O1—C12'16.3 (9)O1—C12—C13107.8 (3)
C20—O3—C21117.9 (2)O1—C12—H12A110.2
C9—O5—H5O97 (2)C13—C12—H12A110.2
C2—N1—C5104.2 (2)O1—C12—H12B110.2
C2—N1—H1N108.9 (19)C13—C12—H12B110.2
C5—N1—H1N111.4 (16)H12A—C12—H12B108.5
N1—C2—C3107.0 (2)O1—C12'—C13'107.4 (3)
N1—C2—H2A110.3O1—C12'—H12C110.2
C3—C2—H2A110.3C13'—C12'—H12C110.2
N1—C2—H2B110.3O1—C12'—H12D110.2
C3—C2—H2B110.3C13'—C12'—H12D110.2
H2A—C2—H2B108.6H12C—C12'—H12D108.5
N4—C3—C2105.8 (2)C12'—C13'—H13D109.5
N4—C3—H3A110.6C12'—C13'—H13E109.5
C2—C3—H3A110.6H13D—C13'—H13E109.5
N4—C3—H3B110.6C12'—C13'—H13F109.5
C2—C3—H3B110.6H13D—C13'—H13F109.5
H3A—C3—H3B108.7H13E—C13'—H13F109.5
C3—N4—C5105.42 (19)C15—C14—C19117.4 (3)
C3—N4—H4N111 (2)C15—C14—C7121.0 (2)
C5—N4—H4N105 (2)C19—C14—C7121.6 (2)
N1—C5—N4106.77 (18)C16—C15—C14121.3 (3)
N1—C5—C10109.25 (19)C16—C15—H15A119.3
N4—C5—C10108.6 (2)C14—C15—H15A119.3
N1—C5—C6111.7 (2)C17—C16—C15120.9 (3)
N4—C5—C6112.5 (2)C17—C16—H16A119.6
C10—C5—C6107.91 (19)C15—C16—H16A119.6
C11—C6—C5112.78 (19)C16—C17—C18119.1 (3)
C11—C6—C7108.50 (18)C16—C17—H17A120.4
C5—C6—C7110.9 (2)C18—C17—H17A120.4
C11—C6—H6A108.2C17—C18—C19120.9 (4)
C5—C6—H6A108.2C17—C18—H18A119.6
C7—C6—H6A108.2C19—C18—H18A119.6
C14—C7—C8112.20 (19)C14—C19—C18120.4 (3)
C14—C7—C6110.7 (2)C14—C19—H19A119.8
C8—C7—C6110.38 (18)C18—C19—H19A119.8
C14—C7—H7A107.8O4—C20—O3123.6 (2)
C8—C7—H7A107.8O4—C20—C8123.6 (3)
C6—C7—H7A107.8O3—C20—C8112.8 (2)
C20—C8—C7111.2 (2)O3—C21—C22108.4 (2)
C20—C8—C9111.4 (2)O3—C21—H21A110.0
C7—C8—C9112.87 (18)C22—C21—H21A110.0
C20—C8—H8A107.0O3—C21—H21B110.0
C7—C8—H8A107.0C22—C21—H21B110.0
C9—C8—H8A107.0H21A—C21—H21B108.4
O5—C9—C23106.6 (2)C21—C22—H22A109.5
O5—C9—C10110.33 (19)C21—C22—H22B109.5
C23—C9—C10110.1 (2)H22A—C22—H22B109.5
O5—C9—C8110.8 (2)C21—C22—H22C109.5
C23—C9—C8110.9 (2)H22A—C22—H22C109.5
C10—C9—C8108.1 (2)H22B—C22—H22C109.5
C5—C10—C9114.35 (19)C9—C23—H23A109.5
C5—C10—H10A108.7C9—C23—H23B109.5
C9—C10—H10A108.7H23A—C23—H23B109.5
C5—C10—H10B108.7C9—C23—H23C109.5
C9—C10—H10B108.7H23A—C23—H23C109.5
H10A—C10—H10B107.6H23B—C23—H23C109.5
O2—C11—O1123.4 (3)
C5—N1—C2—C324.6 (3)C23—C9—C10—C5177.9 (2)
N1—C2—C3—N46.9 (3)C8—C9—C10—C556.6 (3)
C2—C3—N4—C513.4 (3)C12—O1—C11—O29.9 (12)
C2—N1—C5—N433.6 (3)C12'—O1—C11—O21.2 (6)
C2—N1—C5—C1083.7 (3)C12—O1—C11—C6168.6 (11)
C2—N1—C5—C6157.0 (2)C12'—O1—C11—C6177.4 (5)
C3—N4—C5—N129.4 (3)C5—C6—C11—O261.6 (3)
C3—N4—C5—C1088.3 (2)C7—C6—C11—O261.6 (3)
C3—N4—C5—C6152.3 (2)C5—C6—C11—O1119.8 (2)
N1—C5—C6—C1159.3 (3)C7—C6—C11—O1116.9 (2)
N4—C5—C6—C1160.8 (3)C11—O1—C12—C13175 (2)
C10—C5—C6—C11179.39 (18)C12'—O1—C12—C1332 (3)
N1—C5—C6—C7178.81 (18)C11—O1—C12'—C13'116.7 (18)
N4—C5—C6—C761.1 (2)C12—O1—C12'—C13'86 (4)
C10—C5—C6—C758.7 (2)C8—C7—C14—C15128.3 (2)
C11—C6—C7—C1453.4 (3)C6—C7—C14—C15107.9 (3)
C5—C6—C7—C14177.81 (19)C8—C7—C14—C1951.7 (3)
C11—C6—C7—C8178.3 (2)C6—C7—C14—C1972.1 (3)
C5—C6—C7—C857.3 (3)C19—C14—C15—C160.5 (4)
C14—C7—C8—C2055.4 (3)C7—C14—C15—C16179.6 (3)
C6—C7—C8—C20179.4 (2)C14—C15—C16—C170.1 (5)
C14—C7—C8—C9178.55 (19)C15—C16—C17—C180.4 (5)
C6—C7—C8—C954.5 (3)C16—C17—C18—C190.6 (6)
C20—C8—C9—O557.6 (3)C15—C14—C19—C180.2 (5)
C7—C8—C9—O568.3 (2)C7—C14—C19—C18179.8 (3)
C20—C8—C9—C2360.6 (3)C17—C18—C19—C140.3 (6)
C7—C8—C9—C23173.5 (2)C21—O3—C20—O43.1 (4)
C20—C8—C9—C10178.6 (2)C21—O3—C20—C8177.9 (2)
C7—C8—C9—C1052.7 (3)C7—C8—C20—O4142.5 (3)
N1—C5—C10—C9178.1 (2)C9—C8—C20—O490.6 (3)
N4—C5—C10—C962.0 (3)C7—C8—C20—O338.5 (3)
C6—C5—C10—C960.2 (3)C9—C8—C20—O388.4 (3)
O5—C9—C10—C564.7 (3)C20—O3—C21—C22135.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···N40.87 (3)1.87 (3)2.714 (4)163 (3)
N4—H4N···O20.86 (4)2.23 (4)2.971 (4)144 (4)
N1—H1N···O4i0.93 (3)2.32 (3)3.113 (3)143
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H30N2O5
Mr390.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.4140 (17), 10.7606 (19), 10.7874 (19)
α, β, γ (°)103.000 (4), 97.413 (4), 97.736 (4)
V3)1040.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.983, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8475, 4252, 2225
Rint0.065
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 1.00
No. of reflections4252
No. of parameters288
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···N40.87 (3)1.87 (3)2.714 (4)163 (3)
N4—H4N···O20.86 (4)2.23 (4)2.971 (4)144 (4)
N1—H1N···O4i0.93 (3)2.32 (3)3.113 (3)143
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrivenko, A. P., Kozlova, E. A., Grigorev, A. V. & Sorokin, V. V. (2003). Molecules, 8, 251-255.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds