

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-Hydroxy-2-methylguinolinium tetrachlorido(quinolin-2-olato- $\kappa^2 N.O$)stannate(IV) methanol disolvate

Ezzatollah Najafi,^a Mostafa M. Amini^a and Seik Weng Ng^b*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 8 January 2011; accepted 12 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.130; data-to-parameter ratio = 18.2.

In the reaction of 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and stannic chloride, the 2-methyl-8-hydroxyquinoline is protonated, yielding the disolvated title salt, (C10H10NO)[SnCl4(C9H6NO)]·2CH3OH. The SnIV atom in the anion is N,O-chelated by the hydroxyquinolinate in a cis-SnNOCl₄ octahedral geometry. In the crystal, the cation, anion and solvent molecules are linked by $N-H\cdots O$, $O-H\cdots O$ and O-H···Cl hydrogen bonds, generating a three-dimensional network.

Related literature

For related tin-oxinate structures, see: Archer et al. (1987); Fazaeli et al. (2009); Lo & Ng (2009).

Experimental

Crvstal data (C10H10NO)[SnCl4(C9H6NO)]--2CH₄O

 $M_r = 628.91$ Triclinic, P1

meta	l-organic	compounds

7 - 2

V = 1217.53 (9) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.20$ mm

 $\mu = 1.52 \text{ mm}^{-1}$ T = 100 K

a = 7.9395 (3) Å	
b = 9.9721 (4) Å	
c = 16.0531 (8) Å	
$\alpha = 75.056 \ (4)^{\circ}$	
$\beta = 82.529 \ (4)^{\circ}$	
$\gamma = 88.529 \ (3)^{\circ}$	

Data collection

Agilent SuperNova Dual	Technologies, 2010)
diffractometer with an Atlas	$T_{\min} = 0.659, T_{\max} = 0.751$
detector	8825 measured reflections
Absorption correction: multi-scan	5371 independent reflections
(CrysAlis PRO; Agilent	4258 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.040$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	295 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.76 \text{ e } \text{\AA}^{-3}$
5371 reflections	$\Delta \rho_{\rm min} = -1.85 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O3	0.84	1.76	2.595 (4)	172
O3−H3···O1	0.84	1.91	2.736 (4)	168
$O4-H4\cdots Cl1^{i}$	0.84	2.53	3.258 (3)	146
$N2 - H2n \cdot \cdot \cdot O4$	0.88	1.91	2.764 (5)	162

Symmetry code: (i) x + 1, y + 1, z.

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrvsAlis PRO; data reduction: CrvsAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2328).

References

Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Fazaeli, Y., Najafi, E., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m270.

Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m719.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m241

supporting information

Acta Cryst. (2011). E67, m241 [doi:10.1107/S1600536811001954]

8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-2-olato- $\kappa^2 N, O$)stannate(IV) methanol disolvate

Ezzatollah Najafi, Mostafa M. Amini and Seik Weng Ng

S1. Comment

Only symmetrical dichlorotin bis(oxinates) have been reported; these include the 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline derivatives (Archer *et al.*, 1987; Fazaeli *et al.*, 2009; Lo & Ng, 2009). In the reaction of 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and stannic chloride, the 2-methyl-8-hydroxyquinoline is protonated to yield the disolvated salt, $[SnCl_4(C_9H_6NO_2)]^-2CH_3OH$ (Scheme I, Fig. 1). The tin atom in the anion is *N*,*O*-chelated by the hydroxyquinolinate and it exists in a *cis*-SnNOCl₄ octahedral geometry. The cation, anion and solvent molecules are linked by N–H···O and O–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

S2. Experimental

Stannic chloride pentahydrate (0.35 g, 1 mmol), 8-hydroxyquinoline (0.15 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were similarly placed (N–H 0.88±0.01, O–H 0.84±0.01 Å) and their temperature factors were also tied. The final difference Fourier map had a peak and a hole in the vicinity of Sn1.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $[C_{10}H_{10}NO]^+$ [SnCl₄(C₉H₆NO)]⁻⁻ 2CH₃OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-2-olato- $\kappa^2 N$,O)stannate(IV) methanol disolvate

Crystal data

(C₁₀H₁₀NO)[SnCl₄(C₉H₆NO)]·2CH₄O Z = 2 $M_r = 628.91$ F(000) = 628Triclinic, $P\overline{1}$ $D_{\rm x} = 1.715 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Mo *Ka* radiation. $\lambda = 0.71073$ Å *a* = 7.9395 (3) Å Cell parameters from 4114 reflections $\theta = 2.6 - 29.3^{\circ}$ *b* = 9.9721 (4) Å *c* = 16.0531 (8) Å $\mu = 1.52 \text{ mm}^{-1}$ T = 100 K $\alpha = 75.056 \ (4)^{\circ}$ $\beta = 82.529 \ (4)^{\circ}$ Prism, yellow $\gamma = 88.529 (3)^{\circ}$ $0.30 \times 0.25 \times 0.20$ mm V = 1217.53 (9) Å³ Data collection Agilent SuperNova Dual $T_{\rm min} = 0.659, T_{\rm max} = 0.751$ 8825 measured reflections diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray 5371 independent reflections Source 4258 reflections with $I > 2\sigma(I)$ Mirror monochromator $R_{\rm int} = 0.040$ Detector resolution: 10.4041 pixels mm⁻¹ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$ ω scans $h = -8 \rightarrow 10$ Absorption correction: multi-scan $k = -11 \rightarrow 12$ (CrysAlis PRO; Agilent Technologies, 2010) $l = -16 \rightarrow 20$ Refinement Refinement on F^2 295 parameters Least-squares matrix: full 0 restraints $R[F^2 > 2\sigma(F^2)] = 0.049$ Primary atom site location: structure-invariant $wR(F^2) = 0.130$ direct methods *S* = 1.05 Secondary atom site location: difference Fourier 5371 reflections map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0633P)^2] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} = 0.001 \\ &\Delta\rho_{\text{max}} = 1.76 \text{ e} \text{ Å}^{-3} \\ &\Delta\rho_{\text{min}} = -1.85 \text{ e} \text{ Å}^{-3} \end{split}$$

i actional alonne coordinates and ison opic or equivalent ison opic displacement parameters (11)	Fractional atomic coordinates and	l isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
--	-----------------------------------	---------------	--------------	-----------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.51336 (4)	0.56573 (3)	0.20809 (2)	0.01909 (12)	
C11	0.24880 (15)	0.54380 (11)	0.30721 (8)	0.0232 (3)	
C12	0.47350 (15)	0.33873 (11)	0.18991 (8)	0.0242 (3)	
C13	0.67740 (16)	0.50347 (12)	0.32577 (8)	0.0262 (3)	
Cl4	0.75884 (15)	0.60727 (11)	0.09839 (8)	0.0227 (3)	
O1	0.5234 (4)	0.7725 (3)	0.2102 (2)	0.0203 (7)	
O2	0.8013 (5)	1.0336 (3)	0.3161 (2)	0.0280 (8)	
H2	0.8017	0.9885	0.2786	0.042*	
O3	0.8327 (4)	0.8959 (3)	0.1982 (2)	0.0253 (8)	
H3	0.7453	0.8506	0.1976	0.038*	
O4	1.0402 (4)	1.2688 (3)	0.3035 (2)	0.0262 (8)	
H4	1.1279	1.3129	0.3052	0.039*	
N1	0.3617 (5)	0.6649 (4)	0.1035 (2)	0.0191 (8)	
N2	0.8391 (5)	1.1312 (4)	0.4535 (3)	0.0216 (9)	
H2N	0.8831	1.1741	0.4004	0.032*	
C1	0.2875 (6)	0.6087 (5)	0.0509 (3)	0.0235 (10)	
H1	0.2968	0.5117	0.0565	0.028*	
C2	0.1958 (6)	0.6896 (5)	-0.0127 (3)	0.0256 (11)	
H2A	0.1428	0.6470	-0.0492	0.031*	
C3	0.1824 (6)	0.8287 (5)	-0.0226 (3)	0.0215 (10)	
H3A	0.1215	0.8834	-0.0663	0.026*	
C4	0.2598 (6)	0.8921 (5)	0.0328 (3)	0.0211 (10)	
C5	0.2544 (6)	1.0356 (5)	0.0277 (3)	0.0219 (10)	
Н5	0.1940	1.0964	-0.0139	0.026*	
C6	0.3369 (6)	1.0866 (5)	0.0830(3)	0.0247 (11)	
H6	0.3334	1.1834	0.0788	0.030*	
C7	0.4256 (6)	1.0005 (5)	0.1451 (3)	0.0228 (10)	
H7	0.4803	1.0393	0.1828	0.027*	
C8	0.4353 (6)	0.8596 (5)	0.1527 (3)	0.0197 (10)	
C9	0.3486 (6)	0.8058 (4)	0.0956 (3)	0.0171 (9)	
C10	0.7577 (6)	1.0063 (5)	0.4660 (3)	0.0208 (10)	
C11	0.7396 (6)	0.9540 (5)	0.3939 (3)	0.0220 (10)	
C12	0.6582 (6)	0.8283 (5)	0.4091 (3)	0.0238 (11)	
H12	0.6452	0.7911	0.3614	0.029*	
C13	0.5940 (6)	0.7539 (5)	0.4932 (3)	0.0254 (11)	
H13	0.5399	0.6668	0.5013	0.030*	
C14	0.6071 (6)	0.8030 (5)	0.5637 (3)	0.0251 (11)	
H14	0.5609	0.7521	0.6203	0.030*	
C15	0.6919 (6)	0.9330 (5)	0.5509 (3)	0.0226 (10)	

C16	0.7117 (7)	0.9934 (5)	0.6198 (3)	0.0283 (11)	
H16	0.6721	0.9455	0.6781	0.034*	
C17	0.7881 (6)	1.1211 (5)	0.6025 (3)	0.0247 (11)	
H17	0.7957	1.1629	0.6488	0.030*	
C18	0.8548 (6)	1.1910 (5)	0.5179 (3)	0.0224 (10)	
C19	0.9411 (6)	1.3281 (5)	0.4955 (4)	0.0278 (11)	
H19A	0.9106	1.3840	0.4399	0.042*	
H19B	1.0644	1.3150	0.4908	0.042*	
H19C	0.9054	1.3758	0.5410	0.042*	
C20	0.9683 (6)	0.8028 (5)	0.2200 (4)	0.0289 (12)	
H20A	1.0752	0.8552	0.2092	0.043*	
H20B	0.9763	0.7361	0.1843	0.043*	
H20C	0.9470	0.7529	0.2816	0.043*	
C21	0.9985 (7)	1.3030 (6)	0.2168 (3)	0.0319 (12)	
H21A	0.8821	1.2724	0.2171	0.048*	
H21B	1.0773	1.2565	0.1812	0.048*	
H21C	1.0075	1.4037	0.1924	0.048*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Sn1	0.0224 (2)	0.01323 (17)	0.0203 (2)	-0.00323 (12)	-0.00130 (14)	-0.00209 (13)
Cl1	0.0248 (6)	0.0189 (5)	0.0238 (6)	-0.0031 (4)	0.0030 (5)	-0.0041 (5)
C12	0.0291 (7)	0.0147 (5)	0.0277 (7)	-0.0021 (4)	-0.0006 (5)	-0.0045 (5)
C13	0.0291 (7)	0.0225 (6)	0.0245 (7)	-0.0029 (5)	-0.0066 (5)	0.0002 (5)
Cl4	0.0249 (6)	0.0167 (5)	0.0237 (6)	-0.0025 (4)	0.0021 (5)	-0.0028 (5)
01	0.0243 (18)	0.0132 (15)	0.0230 (19)	-0.0003 (13)	-0.0024 (15)	-0.0039 (14)
O2	0.041 (2)	0.0218 (17)	0.0186 (19)	-0.0130 (15)	0.0025 (16)	-0.0020 (14)
O3	0.0248 (19)	0.0234 (17)	0.025 (2)	-0.0081 (14)	-0.0014 (15)	-0.0005 (15)
04	0.030 (2)	0.0241 (18)	0.024 (2)	-0.0085 (14)	-0.0026 (15)	-0.0041 (15)
N1	0.018 (2)	0.0176 (19)	0.019 (2)	-0.0039 (15)	0.0008 (16)	-0.0001 (16)
N2	0.024 (2)	0.021 (2)	0.018 (2)	-0.0018 (16)	-0.0012 (17)	-0.0019 (17)
C1	0.027 (3)	0.015 (2)	0.025 (3)	-0.0030 (19)	0.004 (2)	-0.003 (2)
C2	0.029 (3)	0.029 (3)	0.019 (3)	-0.005 (2)	-0.002 (2)	-0.007(2)
C3	0.022 (3)	0.020 (2)	0.018 (3)	0.0015 (18)	-0.002 (2)	0.0032 (19)
C4	0.022 (3)	0.019 (2)	0.020 (3)	-0.0034 (18)	0.006 (2)	-0.005 (2)
C5	0.022 (3)	0.019 (2)	0.021 (3)	0.0026 (19)	-0.002 (2)	0.000 (2)
C6	0.026 (3)	0.014 (2)	0.030 (3)	-0.0032 (19)	0.007 (2)	-0.001 (2)
C7	0.024 (3)	0.021 (2)	0.019 (3)	-0.0067 (19)	0.005 (2)	-0.002 (2)
C8	0.016 (2)	0.019 (2)	0.021 (3)	-0.0012 (18)	0.0017 (19)	-0.0030 (19)
C9	0.018 (2)	0.017 (2)	0.014 (2)	-0.0023 (17)	0.0039 (18)	-0.0025 (18)
C10	0.019 (3)	0.017 (2)	0.023 (3)	0.0003 (18)	0.000(2)	-0.002 (2)
C11	0.023 (3)	0.020 (2)	0.022 (3)	-0.0006 (19)	-0.003 (2)	-0.003 (2)
C12	0.023 (3)	0.023 (2)	0.024 (3)	-0.0014 (19)	0.001 (2)	-0.005 (2)
C13	0.023 (3)	0.016 (2)	0.034 (3)	-0.0063 (19)	0.004 (2)	-0.002 (2)
C14	0.030 (3)	0.016 (2)	0.024 (3)	0.0005 (19)	0.002 (2)	0.003 (2)
C15	0.016 (2)	0.022 (2)	0.028 (3)	0.0051 (19)	-0.001 (2)	-0.005 (2)
C16	0.031 (3)	0.031 (3)	0.020 (3)	0.002 (2)	0.001 (2)	-0.003 (2)

supporting information

C17	0.026 (3)	0.028 (3)	0.019 (3)	-0.001 (2)	-0.002 (2)	-0.005 (2)
C18	0.014 (2)	0.028 (3)	0.024 (3)	0.0036 (19)	-0.002 (2)	-0.004 (2)
C19	0.023 (3)	0.030 (3)	0.032 (3)	-0.002 (2)	-0.006 (2)	-0.011 (2)
C20	0.025 (3)	0.031 (3)	0.029 (3)	-0.002 (2)	-0.004 (2)	-0.005 (2)
C21	0.032 (3)	0.034 (3)	0.027 (3)	-0.004 (2)	-0.004 (2)	-0.002 (2)

Geometric parameters (Å, °)

Sn1—O1	2.075 (3)	С6—Н6	0.9500
Sn1—N1	2.204 (4)	C7—C8	1.379 (6)
Sn1—Cl3	2.3758 (12)	С7—Н7	0.9500
Sn1—Cl2	2.3898 (11)	C8—C9	1.428 (6)
Sn1—Cl4	2.4174 (12)	C10—C15	1.409 (7)
Sn1—Cl1	2.4427 (12)	C10—C11	1.412 (6)
O1—C8	1.350 (5)	C11—C12	1.376 (6)
O2—C11	1.333 (6)	C12—C13	1.399 (7)
O2—H2	0.8400	C12—H12	0.9500
O3—C20	1.423 (6)	C13—C14	1.361 (7)
O3—H3	0.8400	C13—H13	0.9500
O4—C21	1.426 (6)	C14—C15	1.431 (7)
O4—H4	0.8400	C14—H14	0.9500
N1—C1	1.328 (6)	C15—C16	1.416 (6)
N1—C9	1.381 (5)	C16—C17	1.371 (7)
N2	1.341 (6)	C16—H16	0.9500
N2-C10	1.373 (6)	C17—C18	1.397 (7)
N2—H2N	0.8800	C17—H17	0.9500
C1—C2	1.400 (7)	C18—C19	1.483 (7)
C1—H1	0.9500	C19—H19A	0.9800
C2—C3	1.358 (6)	C19—H19B	0.9800
C2—H2A	0.9500	C19—H19C	0.9800
C3—C4	1.422 (6)	C20—H20A	0.9800
С3—НЗА	0.9500	C20—H20B	0.9800
C4—C9	1.399 (7)	C20—H20C	0.9800
C4—C5	1.411 (6)	C21—H21A	0.9800
C5—C6	1.370 (6)	C21—H21B	0.9800
С5—Н5	0.9500	C21—H21C	0.9800
C6—C7	1.393 (7)		
O1—Sn1—N1	78.45 (12)	N1—C9—C4	121.7 (4)
O1—Sn1—Cl3	90.22 (9)	N1—C9—C8	116.6 (4)
N1—Sn1—Cl3	168.60 (9)	C4—C9—C8	121.7 (4)
O1—Sn1—Cl2	171.51 (9)	N2-C10-C15	119.3 (4)
N1—Sn1—Cl2	93.09 (10)	N2-C10-C11	119.7 (4)
Cl3—Sn1—Cl2	98.22 (4)	C15—C10—C11	121.0 (4)
O1—Sn1—Cl4	88.73 (9)	O2—C11—C12	125.8 (4)
N1—Sn1—Cl4	87.00 (10)	O2—C11—C10	116.2 (4)
Cl3—Sn1—Cl4	93.98 (4)	C12—C11—C10	118.0 (5)
Cl2—Sn1—Cl4	91.61 (4)	C11—C12—C13	121.5 (4)

O1—Sn1—Cl1	88.01 (9)	C11—C12—H12	119.3
N1—Sn1—Cl1	86.76 (10)	C13—C12—H12	119.3
Cl3—Sn1—Cl1	91.73 (4)	C14—C13—C12	121.7 (4)
Cl2—Sn1—Cl1	90.78 (4)	C14—C13—H13	119.1
Cl4—Sn1—Cl1	173.44 (4)	C12—C13—H13	119.1
C8—O1—Sn1	114.7 (2)	C13—C14—C15	118.7 (5)
С11—О2—Н2	109.5	C13—C14—H14	120.7
С20—О3—Н3	109.5	C15—C14—H14	120.7
C21—O4—H4	109.5	C10—C15—C16	117.8 (4)
C1—N1—C9	119.6 (4)	C10—C15—C14	119.1 (4)
C1—N1—Sn1	129.6 (3)	C16—C15—C14	123.1 (5)
C9—N1—Sn1	110.8 (3)	C17—C16—C15	120.0 (5)
C18—N2—C10	123.4 (4)	C17—C16—H16	120.0
C18—N2—H2N	118.3	C15—C16—H16	120.0
C10—N2—H2N	118.3	C16—C17—C18	121.2 (4)
N1-C1-C2	121.3 (4)	С16—С17—Н17	119.4
N1—C1—H1	119.3	C18—C17—H17	119.4
C2-C1-H1	119.3	N2-C18-C17	118.2 (4)
$C_3 - C_2 - C_1$	120 3 (4)	N_{2} C18 C19	118.2 (4)
$C_3 - C_2 - H_2 A$	119.8	C17 - C18 - C19	123.6(4)
C1 - C2 - H2A	119.8	C18 - C19 - H19A	109 5
$C^2 - C^3 - C^4$	119.8 (4)	C18—C19—H19B	109.5
C2—C3—H3A	120.1	H19A—C19—H19B	109.5
C4—C3—H3A	120.1	C18—C19—H19C	109.5
C9-C4-C5	118.5 (4)	H19A—C19—H19C	109.5
C9-C4-C3	117.2 (4)	H19B—C19—H19C	109.5
$C_{5}-C_{4}-C_{3}$	124 3 (4)	Ω_{3} C_{20} H_{20A}	109.5
C6-C5-C4	119 6 (4)	O_3 — C_2O — H_2OB	109.5
C6—C5—H5	120.2	H20A—C20—H20B	109.5
C4—C5—H5	120.2	$O_3 - C_2 O - H_2 O C$	109.5
C_{5} C_{6} C_{7}	121.8 (4)	$H_{20}A - C_{20} - H_{20}C$	109.5
C5—C6—H6	119.1	H_{20B} C_{20} H_{20C}	109.5
C7—C6—H6	119.1	Ω_{4} C_{21} H_{21A}	109.5
$C_{8} - C_{7} - C_{6}$	120.9 (4)	04-C21-H21B	109.5
C8-C7-H7	119 5	$H_{21}A = C_{21} = H_{21}B$	109.5
C6-C7-H7	119.5	04-C21-H21C	109.5
01 - C8 - C7	123 1 (4)	$H_{21}A = C_{21} = H_{21}C$	109.5
01 - C8 - C9	129.1(4) 1194(4)	$H_{21B} = C_{21} = H_{21C}$	109.5
C7 - C8 - C9	117.5 (4)		109.0
	117.5 (4)		
N1— $Sn1$ — $O1$ — $C8$	1.6 (3)	C5-C4-C9-N1	-178.9(4)
Cl3— $Sn1$ — $O1$ — $C8$	-177.2(3)	C3-C4-C9-N1	0.3 (7)
Cl4— $Sn1$ — $O1$ — $C8$	88.8 (3)	C5-C4-C9-C8	-1.1(7)
Cl1— $Sn1$ — $O1$ — $C8$	-85.5 (3)	C3—C4—C9—C8	178.1 (4)
$O_1 = S_n = N_1 = C_1$	178.1 (4)	01—C8—C9—N1	-0.1 (6)
Cl3— $Sn1$ — $N1$ — $C1$	-175.9(4)	C7-C8-C9-N1	179.2 (4)
Cl2— $Sn1$ — $N1$ — $C1$	-2.6(4)	01-C8-C9-C4	-178.0(4)
Cl4— $Sn1$ — $N1$ — Cl	88 8 (4)	C7 - C8 - C9 - C4	13(7)
	00.0(1)	С, СО СУ СТ	

Cl1—Sn1—N1—C1	-93.2 (4)	C18—N2—C10—C15	-2.4 (7)
O1—Sn1—N1—C9	-1.6 (3)	C18—N2—C10—C11	176.9 (4)
Cl3—Sn1—N1—C9	4.4 (7)	N2-C10-C11-O2	-1.5 (7)
Cl2—Sn1—N1—C9	177.6 (3)	C15—C10—C11—O2	177.8 (4)
Cl4—Sn1—N1—C9	-90.9 (3)	N2-C10-C11-C12	179.7 (4)
Cl1—Sn1—N1—C9	87.0 (3)	C15—C10—C11—C12	-1.0 (7)
C9—N1—C1—C2	0.0 (7)	O2-C11-C12-C13	-178.4 (5)
Sn1—N1—C1—C2	-179.7 (3)	C10-C11-C12-C13	0.3 (7)
N1—C1—C2—C3	0.7 (8)	C11—C12—C13—C14	0.8 (8)
C1—C2—C3—C4	-0.9 (8)	C12—C13—C14—C15	-1.2 (7)
C2—C3—C4—C9	0.4 (7)	N2-C10-C15-C16	0.7 (7)
C2—C3—C4—C5	179.5 (5)	C11—C10—C15—C16	-178.7 (4)
C9—C4—C5—C6	0.7 (7)	N2-C10-C15-C14	179.9 (4)
C3—C4—C5—C6	-178.5 (5)	C11—C10—C15—C14	0.6 (7)
C4—C5—C6—C7	-0.5 (8)	C13—C14—C15—C10	0.5 (7)
C5—C6—C7—C8	0.7 (8)	C13—C14—C15—C16	179.7 (5)
Sn1—O1—C8—C7	179.3 (4)	C10-C15-C16-C17	2.0 (7)
Sn1—O1—C8—C9	-1.4 (5)	C14—C15—C16—C17	-177.2 (5)
C6—C7—C8—O1	178.2 (4)	C15—C16—C17—C18	-3.1 (7)
C6—C7—C8—C9	-1.1 (7)	C10—N2—C18—C17	1.4 (7)
C1—N1—C9—C4	-0.5 (7)	C10—N2—C18—C19	-178.2 (4)
Sn1—N1—C9—C4	179.3 (4)	C16—C17—C18—N2	1.4 (7)
C1—N1—C9—C8	-178.4 (4)	C16—C17—C18—C19	-179.0 (4)
Sn1—N1—C9—C8	1.4 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	D··· A	D—H···A
02—H2···O3	0.84	1.76	2.595 (4)	172
O3—H3…O1	0.84	1.91	2.736 (4)	168
O4—H4···Cl1 ⁱ	0.84	2.53	3.258 (3)	146
N2—H2n···O4	0.88	1.91	2.764 (5)	162

Symmetry code: (i) x+1, y+1, z.