organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o380-o381

1,1′-[4-(2,4-Di­chloro­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­yl]di­ethanone

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 12 December 2010; accepted 16 December 2010; online 15 January 2011)

In the title compound, C17H17Cl2NO2, the central 1,4-dihydro­pyridine ring adopts a flattened-boat conformation. The ethanone substituents of the dihydro­pyridine ring at positions 3 and 5 have synperiplanar (cis) or anti­periplanar (trans) conformations with respect to the adjacent C=C bonds in the dihydro­pyridine ring. The 2,4-dichloro­phenyl ring is almost planar [r.m.s. deviation = 0.0045 (1) Å] and almost perpendicular [89.27 (3)°] to the mean plane of the dihydro­pyridine ring. In the crystal, an N—H⋯O hydrogen bond links mol­ecules into a zigzag chain along the ac diagonal. C—H⋯Cl contacts form centrosymmetric dimers and additional weak C—H⋯O contacts further consolidate the packing.

Related literature

For background to the pharmaceutical applications of 1,4-dihydro­pyridine derivatives, see: Rose (1989[Rose, U. (1989). Arzneim. Forsch. (Drug Res.), 39, 1393-1398.], 1990[Rose, U. (1990). Arch. Pharm. (Weinheim), 323, 281-286.]); Salehi & Guo (2004[Salehi, H. & Guo, Q. X. (2004). Synth. Commun. 34, 4349-4357.]). For structure–activity relationships among 1,4-dihydro­pyridines, see: Triggle et al. (1980[Triggle, A. M., Shefter, E. & Triggle, D. J. (1980). J. Med. Chem. 23, 1442-1445.]); Janis & Triggle (1984[Janis, R. A. & Triggle, D. J. (1984). Drug Dev. Res. 4, 257-274.]); Langs & Triggle (1985[Langs, D. A. & Triggle, D. J. (1985). Mol. Pharmacol. 27, 544-548.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17Cl2NO2

  • Mr = 338.22

  • Monoclinic, P 21 /n

  • a = 10.307 (4) Å

  • b = 13.745 (3) Å

  • c = 11.312 (2) Å

  • β = 93.80 (2)°

  • V = 1599.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.910, Tmax = 0.929

  • 3247 measured reflections

  • 2811 independent reflections

  • 2265 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.05

  • 2811 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.81 (2) 2.16 (2) 2.951 (2) 163 (2)
C8—H8B⋯O2ii 0.96 2.56 3.397 (3) 147
C10—H10C⋯O2ii 0.96 2.43 3.341 (3) 158
C17—H17⋯Cl2iii 0.93 (1) 2.92 (1) 3.796 (2) 158 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Dihydropyridine derivatives have yielded many drugs which act as calcium channel agonists or antagonists (Rose, 1989, 1990) and various bioactive compounds such as vasodilator, antiatherosclerotic, antitumor, geroprotective, heptaprotective and antidiabetic agents (Salehi & Guo, 2004). Triggle and co-workers (Triggle et al., 1980; Janis & Triggle, 1984; Langs & Triggle, 1985) have identified some important structural requirements for biological activity. We have studied the crystal structure of 1,1'-[4-(2,4-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine- 3,5-diyl]diethanone.

In the title compound (I)(Fig. 1), C17H17Cl2NO2, the central 1, 4-dihydropyridine ring adopts a flattened boat conformation. The ethanone substituents of the dihydropyridine ring at positions 3 and 5 have different (cis/trans) configurations with respect to the double bonds in the pyridine ring. Each group is oriented in a synperiplanar (cis) or antiperiplanar (trans) conformation with respect to the adjacent C C in the dihydropyridine ring, which is evident from the torsion angles of C6—C5—C11—O2 [31.44 (40)°] and C2—C3—C9—O1 [172.43 (20)°], respectively.

The methyl groups attached at C2 and C6 positions of the pyridine ring adopt equatorial orientation as can be seen from the torsion angles [C7—C6—N1—C2] 165.54 (20)° and [C8—C2—N1—C6] -164.62 (20)°. The 2,4-dichlorophenyl ring is planar and almost perpendicular to the mean plane of the dihydropyridine ring with the plane angle: 89.27 (3)°. This close to perpendicular orientation of the dichlorophenyl ring to the dihydropyridine ring can be ascribed to the greater steric hinderance with the two ethanone groups at C3 and C5. Atom N1(x,y,z) of the pyridine ring make a intermolecular hydrogen bond with the atom O1(-1/2 + x, 1/2 + y, -1/2 + z), leading to a zigzag chain running along the diagonal of the ac - plane (Fig. 2). C17—H17···Cl2 contacts form centrosymmetric dimers and additional weak C—H···O contacts further stabilise the structure, Table 1.

Related literature top

For background to the pharmaceutical applications of 1,4-dihydropyridine derivatives, see: Rose (1989, 1990); Salehi & Guo (2004). For structure–activity relationships among 1,4-dihydropyridines, see: Triggle et al. (1980); Janis & Triggle (1984); Langs & Triggle (1985).

Experimental top

2,4,dicholrobenzaldehyde (10 mmol), acetylacetone (20 mmol) and ammonium acetate (10 mmol) in ethanol were heated on a steam bath until the color of the solution changed to reddish-orange. The mixture was cooled in ice to yield a solid product, which was extracted using diethylether. The purity of the crude product was checked through TLC and recrystallized from acetone/ether 1:1 [yield: 60%, m.p. 218–220°C].

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group. The N-bound H atom is located in a difference Fourier map and its positional parameters were refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing of the crystal structre (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
1,1'-[4-(2,4-Dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5- diyl]diethanone top
Crystal data top
C17H17Cl2NO2F(000) = 704
Mr = 338.22Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.307 (4) Åθ = 2–25°
b = 13.745 (3) ŵ = 0.41 mm1
c = 11.312 (2) ÅT = 293 K
β = 93.80 (2)°Block, colourless
V = 1599.0 (8) Å30.23 × 0.21 × 0.18 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
2265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 116
Tmin = 0.910, Tmax = 0.929l = 1313
3247 measured reflections3 standard reflections every 60 min
2811 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.6776P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H17Cl2NO2V = 1599.0 (8) Å3
Mr = 338.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.307 (4) ŵ = 0.41 mm1
b = 13.745 (3) ÅT = 293 K
c = 11.312 (2) Å0.23 × 0.21 × 0.18 mm
β = 93.80 (2)°
Data collection top
Nonius MACH3
diffractometer
2265 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.910, Tmax = 0.9293 standard reflections every 60 min
3247 measured reflections intensity decay: none
2811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2811 reflectionsΔρmin = 0.21 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.09331 (17)0.23909 (14)0.35680 (16)0.0368 (4)
C30.21210 (16)0.23609 (13)0.41766 (15)0.0333 (4)
C40.32545 (16)0.18638 (13)0.36213 (15)0.0325 (4)
H40.37700.15170.42470.039*
C50.27979 (18)0.11313 (13)0.26722 (15)0.0371 (4)
C60.16077 (19)0.12296 (14)0.21010 (16)0.0405 (4)
C70.1058 (2)0.06292 (16)0.1077 (2)0.0573 (6)
H7A0.01300.07060.09980.069*
H7B0.12670.00430.12160.069*
H7C0.14240.08410.03620.069*
C80.02898 (18)0.28757 (18)0.3917 (2)0.0536 (6)
H8A0.09610.27970.32950.064*
H8B0.01280.35560.40500.064*
H8C0.05620.25840.46310.064*
C90.24581 (18)0.28036 (14)0.53385 (16)0.0388 (4)
C100.1592 (2)0.34902 (17)0.59460 (18)0.0538 (6)
H10A0.20280.37110.66730.065*
H10B0.08030.31620.61140.065*
H10C0.13900.40380.54400.065*
C110.3678 (2)0.03428 (15)0.23582 (19)0.0485 (5)
C120.4571 (3)0.00851 (18)0.3312 (2)0.0695 (7)
H12A0.47680.07450.31140.083*
H12B0.41590.00720.40490.083*
H12C0.53600.02870.33890.083*
C130.41271 (16)0.26267 (13)0.30834 (15)0.0313 (4)
C140.54362 (16)0.27779 (13)0.34248 (15)0.0348 (4)
C150.61739 (18)0.34868 (15)0.29079 (17)0.0422 (5)
H150.70410.35800.31660.051*
C160.56114 (19)0.40453 (15)0.20163 (17)0.0446 (5)
C170.4322 (2)0.39221 (15)0.16311 (17)0.0457 (5)
H170.39430.43020.10220.055*
C180.36099 (18)0.32216 (14)0.21721 (16)0.0394 (4)
H180.27400.31420.19160.047*
Cl10.62411 (4)0.20669 (4)0.45204 (5)0.05059 (17)
Cl20.65383 (6)0.49418 (5)0.13777 (6)0.0727 (2)
N10.07592 (16)0.19087 (13)0.25047 (15)0.0438 (4)
O10.35315 (14)0.26245 (14)0.58271 (14)0.0638 (5)
O20.3688 (2)0.00154 (15)0.13564 (16)0.0885 (7)
H10.006 (2)0.1959 (17)0.213 (2)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0286 (9)0.0424 (10)0.0386 (10)0.0049 (8)0.0028 (7)0.0092 (8)
C30.0286 (9)0.0395 (10)0.0314 (9)0.0029 (7)0.0007 (7)0.0038 (7)
C40.0304 (9)0.0363 (9)0.0297 (9)0.0005 (7)0.0065 (7)0.0013 (7)
C50.0417 (10)0.0348 (10)0.0339 (9)0.0050 (8)0.0049 (8)0.0011 (8)
C60.0483 (11)0.0366 (10)0.0351 (10)0.0091 (9)0.0095 (8)0.0048 (8)
C70.0707 (15)0.0496 (13)0.0480 (12)0.0153 (11)0.0231 (11)0.0001 (10)
C80.0283 (10)0.0693 (15)0.0624 (13)0.0005 (10)0.0016 (9)0.0081 (11)
C90.0347 (10)0.0472 (11)0.0345 (9)0.0049 (8)0.0019 (8)0.0016 (8)
C100.0600 (13)0.0636 (14)0.0379 (11)0.0095 (11)0.0043 (9)0.0027 (10)
C110.0546 (12)0.0396 (11)0.0503 (12)0.0021 (9)0.0034 (9)0.0076 (9)
C120.0770 (17)0.0506 (14)0.0778 (17)0.0214 (12)0.0178 (14)0.0106 (12)
C130.0282 (9)0.0359 (9)0.0295 (8)0.0005 (7)0.0009 (7)0.0063 (7)
C140.0294 (9)0.0392 (10)0.0351 (9)0.0036 (7)0.0025 (7)0.0043 (8)
C150.0290 (9)0.0505 (12)0.0469 (11)0.0040 (8)0.0010 (8)0.0042 (9)
C160.0454 (11)0.0459 (11)0.0431 (11)0.0097 (9)0.0076 (9)0.0009 (9)
C170.0492 (11)0.0492 (12)0.0377 (10)0.0045 (9)0.0051 (9)0.0058 (9)
C180.0333 (9)0.0474 (11)0.0365 (10)0.0038 (8)0.0060 (8)0.0003 (8)
Cl10.0328 (3)0.0580 (3)0.0589 (3)0.0034 (2)0.0119 (2)0.0099 (2)
Cl20.0696 (4)0.0779 (5)0.0706 (4)0.0307 (3)0.0044 (3)0.0198 (3)
N10.0329 (9)0.0529 (10)0.0431 (9)0.0060 (7)0.0163 (7)0.0043 (8)
O10.0408 (8)0.0997 (13)0.0485 (9)0.0097 (8)0.0152 (7)0.0258 (9)
O20.1091 (16)0.0922 (15)0.0621 (11)0.0329 (12)0.0095 (10)0.0350 (10)
Geometric parameters (Å, º) top
C2—C31.365 (2)C10—H10A0.9600
C2—N11.375 (3)C10—H10B0.9600
C2—C81.502 (3)C10—H10C0.9600
C3—C91.469 (3)C11—O21.220 (3)
C3—C41.524 (2)C11—C121.492 (3)
C4—C51.524 (2)C12—H12A0.9600
C4—C131.533 (2)C12—H12B0.9600
C4—H40.9800C12—H12C0.9600
C5—C61.355 (3)C13—C181.394 (3)
C5—C111.472 (3)C13—C141.394 (2)
C6—N11.378 (3)C14—C151.389 (3)
C6—C71.503 (3)C14—Cl11.7444 (18)
C7—H7A0.9600C15—C161.366 (3)
C7—H7B0.9600C15—H150.9300
C7—H7C0.9600C16—C171.382 (3)
C8—H8A0.9600C16—Cl21.745 (2)
C8—H8B0.9600C17—C181.378 (3)
C8—H8C0.9600C17—H170.9300
C9—O11.228 (2)C18—H180.9300
C9—C101.497 (3)N1—H10.81 (2)
C3—C2—N1119.17 (17)H10A—C10—H10B109.5
C3—C2—C8128.40 (18)C9—C10—H10C109.5
N1—C2—C8112.41 (16)H10A—C10—H10C109.5
C2—C3—C9126.14 (17)H10B—C10—H10C109.5
C2—C3—C4119.48 (16)O2—C11—C5122.6 (2)
C9—C3—C4114.33 (15)O2—C11—C12118.9 (2)
C5—C4—C3112.16 (14)C5—C11—C12118.43 (18)
C5—C4—C13109.52 (14)C11—C12—H12A109.5
C3—C4—C13110.04 (14)C11—C12—H12B109.5
C5—C4—H4108.3H12A—C12—H12B109.5
C3—C4—H4108.3C11—C12—H12C109.5
C13—C4—H4108.3H12A—C12—H12C109.5
C6—C5—C11120.76 (17)H12B—C12—H12C109.5
C6—C5—C4119.86 (17)C18—C13—C14115.67 (16)
C11—C5—C4119.35 (16)C18—C13—C4119.28 (15)
C5—C6—N1118.96 (17)C14—C13—C4125.05 (16)
C5—C6—C7126.61 (19)C15—C14—C13122.33 (17)
N1—C6—C7114.35 (18)C15—C14—Cl1116.38 (13)
C6—C7—H7A109.5C13—C14—Cl1121.28 (14)
C6—C7—H7B109.5C16—C15—C14119.20 (17)
H7A—C7—H7B109.5C16—C15—H15120.4
C6—C7—H7C109.5C14—C15—H15120.4
H7A—C7—H7C109.5C15—C16—C17121.10 (18)
H7B—C7—H7C109.5C15—C16—Cl2119.04 (15)
C2—C8—H8A109.5C17—C16—Cl2119.85 (16)
C2—C8—H8B109.5C18—C17—C16118.35 (18)
H8A—C8—H8B109.5C18—C17—H17120.8
C2—C8—H8C109.5C16—C17—H17120.8
H8A—C8—H8C109.5C17—C18—C13123.34 (17)
H8B—C8—H8C109.5C17—C18—H18118.3
O1—C9—C3118.17 (17)C13—C18—H18118.3
O1—C9—C10117.81 (17)C2—N1—C6124.61 (16)
C3—C9—C10123.98 (17)C2—N1—H1118.2 (16)
C9—C10—H10A109.5C6—N1—H1116.5 (16)
C9—C10—H10B109.5
N1—C2—C3—C9177.66 (17)C4—C5—C11—C1234.8 (3)
C8—C2—C3—C90.5 (3)C5—C4—C13—C1862.3 (2)
N1—C2—C3—C44.8 (3)C3—C4—C13—C1861.4 (2)
C8—C2—C3—C4177.01 (18)C5—C4—C13—C14116.97 (18)
C2—C3—C4—C522.3 (2)C3—C4—C13—C14119.30 (18)
C9—C3—C4—C5159.92 (15)C18—C13—C14—C151.2 (3)
C2—C3—C4—C1399.89 (18)C4—C13—C14—C15179.54 (16)
C9—C3—C4—C1377.89 (18)C18—C13—C14—Cl1177.96 (13)
C3—C4—C5—C624.6 (2)C4—C13—C14—Cl11.3 (2)
C13—C4—C5—C697.9 (2)C13—C14—C15—C161.4 (3)
C3—C4—C5—C11157.55 (16)Cl1—C14—C15—C16177.78 (15)
C13—C4—C5—C1180.0 (2)C14—C15—C16—C170.6 (3)
C11—C5—C6—N1173.01 (18)C14—C15—C16—Cl2179.48 (15)
C4—C5—C6—N19.1 (3)C15—C16—C17—C180.2 (3)
C11—C5—C6—C73.6 (3)Cl2—C16—C17—C18178.61 (16)
C4—C5—C6—C7174.23 (18)C16—C17—C18—C130.4 (3)
C2—C3—C9—O1172.37 (19)C14—C13—C18—C170.3 (3)
C4—C3—C9—O110.0 (3)C4—C13—C18—C17179.59 (18)
C2—C3—C9—C1010.0 (3)C3—C2—N1—C613.8 (3)
C4—C3—C9—C10167.64 (18)C8—C2—N1—C6164.67 (18)
C6—C5—C11—O231.2 (3)C5—C6—N1—C211.5 (3)
C4—C5—C11—O2146.6 (2)C7—C6—N1—C2165.50 (18)
C6—C5—C11—C12147.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.16 (2)2.951 (2)163 (2)
C8—H8B···O2ii0.962.563.397 (3)147
C10—H10C···O2ii0.962.433.341 (3)158
C4—H4···Cl10.982.653.190 (2)115
C17—H17···Cl2iii0.93 (1)2.92 (1)3.796 (2)158 (1)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H17Cl2NO2
Mr338.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.307 (4), 13.745 (3), 11.312 (2)
β (°) 93.80 (2)
V3)1599.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.910, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3247, 2811, 2265
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.05
No. of reflections2811
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (2)2.16 (2)2.951 (2)163 (2)
C8—H8B···O2ii0.962.563.397 (3)147
C10—H10C···O2ii0.962.433.341 (3)158
C4—H4···Cl10.982.653.190 (2)115
C17—H17···Cl2iii0.93 (1)2.918 (1)3.796 (2)157.9 (1)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

JK thanks the UGC for the RFSMS fellowship. SN thanks the CSIR for funding provided under the Emeritus Scientist Scheme. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1984). Drug Dev. Res. 4, 257–274.  CrossRef CAS Web of Science Google Scholar
First citationLangs, D. A. & Triggle, D. J. (1985). Mol. Pharmacol. 27, 544–548.  CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. (1989). Arzneim. Forsch. (Drug Res.), 39, 1393–1398.  CAS Google Scholar
First citationRose, U. (1990). Arch. Pharm. (Weinheim), 323, 281–286.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalehi, H. & Guo, Q. X. (2004). Synth. Commun. 34, 4349–4357.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriggle, A. M., Shefter, E. & Triggle, D. J. (1980). J. Med. Chem. 23, 1442–1445.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o380-o381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds