organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1,2-Di­chloro-1,2-bis­­(3-chloro­quinoxalin-2-yl)ethene

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 December 2010; accepted 26 December 2010; online 8 January 2011)

The title compound, C18H8Cl4N4, exists in a cis configuration with respect to the bridging C=C bond. The two essentially planar quinoxaline ring systems [maximum deviations = 0.012 (1) and 0.022 (1) Å] are inclined at an angle of 59.84 (3). In the crystal, adjacent mol­ecules are linked into chains propagating along [001] via inter­molecular C—H⋯N hydrogen bonds. Weak inter­molecular ππ [centroid–centroid distance = 3.6029 (7)°] and C—H⋯π inter­actions are also observed.

Related literature

For general background to and applications of the title compound, see: Fun et al. (2009[Fun, H.-K., Kia, R., Maity, A. C., Chakrabarty, R. & Goswami, S. (2009). Acta Cryst. E65, o354.]); Goswami et al. (2007[Goswami, S., Maity, A. C. & Fun, H.-K. (2007). Chem. Lett. 36, 552-553]). For closely related structures, see: Fun et al. (2009[Fun, H.-K., Kia, R., Maity, A. C., Chakrabarty, R. & Goswami, S. (2009). Acta Cryst. E65, o354.]); Goswami et al. (2007[Goswami, S., Maity, A. C. & Fun, H.-K. (2007). Chem. Lett. 36, 552-553]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H8Cl4N4

  • Mr = 422.08

  • Monoclinic, P 21 /c

  • a = 19.0972 (5) Å

  • b = 10.9883 (3) Å

  • c = 8.1905 (2) Å

  • β = 90.782 (1)°

  • V = 1718.58 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.79 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.608, Tmax = 0.933

  • 72483 measured reflections

  • 8778 independent reflections

  • 6556 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.11

  • 8778 reflections

  • 267 parameters

  • All H-atom parameters refined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N2i 0.995 (17) 2.454 (17) 3.2609 (16) 137.8 (13)
C16—H16⋯Cg1ii 0.97 (2) 3.00 (2) 3.9664 (16) 176.0 (16)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Halogen substituted heterocyclic compounds are of great importance due to their broad spectrum of use in organic chemistry. Recently a series of trichloromethyl substituted heterocyclic compounds have been synthesized by us in good yield using N-chlorosuccinimide (NCS) and triphenylphosphine (PPh3) in carbon tetrachloride (Fun et al., 2009; Goswami et al., 2007). Here we report the results of X-ray crystallographic studies of the supramolecular self-assembly of a chlorine-substituted heterocyclic compound to show its possible choice of polymer formation by self-assembly. Reaction of 2-chloro-3-trichloromethylquinoxaline with Co(I)(PPh3)3Cl results in the formation of the title compound.

The title compound (Fig. 1) exists in a cis configuration with respect to the bridging C9C10 bond [bond length of C9C10 = 1.3374 (16) Å and torsion angle of C8–C9–C10–C11 = -0.3 (2)°]. The two quinoxaline ring systems [(C1–C8/N1/N2) & (C11–C18/N3/N4)] are essentially planar, with maximum deviations of 0.022 (1) Å at atom C8 and -0.012 (1) Å at atom C11, respectively. An interplanar angle of 59.84 (3)° is formed between the two quinoxaline ring systems, indicating the molecule is not planar. All geometric parameters are consistent to those observed in closely related structures (Goswami et al., 2007; Fun et al., 2009).

In the crystal packing, intermolecular C17—H17···N2 hydrogen bonds (Table 1) link adjacent molecules into one-dimensional chains in an anti-parallel manner along the c axis (Fig. 2). Further stabilization of the crystal packing is provided by weak intermolecular C16—H16···Cg1 interactions (Table 1) as well as intermolecular Cg2···Cg3 interactions [3.6029 (7) Å; symmetry code: x, -y+3/2, z-1/2] where Cg1, Cg2 are the centroids of the C13–C18 and C1–C6 benzene rings, respectively, and Cg3 is the centroid of C1/C6–C8/N1/N2 pyrazine ring.

Related literature top

For general background to and applications of the title compound, see: Fun et al. (2009); Goswami et al. (2007). For closely related structures, see: Fun et al. (2009); Goswami et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2-Chloro-3-trichloromethylquinoxaline (1 mmol) was dissolved in dry benzene (30 ml). The anhydrous green coloured Co(I)(PPh3)3Cl (2.5 mmol) catalyst was added to the reaction mixture with stirring at room temperature under nitrogen atmosphere. After 30 minutes, the colour of the reaction mixture changed from green to blue. The reaction mixture was then heated under reflux condition for 2-3 h. The solvent was evaporated to dryness. The residue was then worked up with water and the organic part was extracted with chloroform. The organic layer was dried (Na2SO4) and concentrated. Column chromatography of the crude product on silica gel and elution with methanol in chloroform afforded the title compound. Single crystals were grown by slow evaporation of a 1:1 solution of CHCl3 and methanol.

Refinement top

All H atoms were located from a difference Fourier map, and allowed to refine freely with range of C—H = 0.89 (2)–0.994 (18) Å. The reflection (100) was omitted as the intensity was affected by the beam backstop.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis, showing a pair of 1D chains propagating along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
(Z)-1,2-Dichloro-1,2-bis(3-chloroquinoxalin-2-yl)ethene top
Crystal data top
C18H8Cl4N4F(000) = 848
Mr = 422.08Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9887 reflections
a = 19.0972 (5) Åθ = 2.1–37.2°
b = 10.9883 (3) ŵ = 0.70 mm1
c = 8.1905 (2) ÅT = 100 K
β = 90.782 (1)°Block, yellow
V = 1718.58 (8) Å30.79 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8778 independent reflections
Radiation source: fine-focus sealed tube6556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 37.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3232
Tmin = 0.608, Tmax = 0.933k = 1818
72483 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.060P)2 + 0.1538P]
where P = (Fo2 + 2Fc2)/3
8778 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H8Cl4N4V = 1718.58 (8) Å3
Mr = 422.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.0972 (5) ŵ = 0.70 mm1
b = 10.9883 (3) ÅT = 100 K
c = 8.1905 (2) Å0.79 × 0.22 × 0.10 mm
β = 90.782 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6556 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.933Rint = 0.061
72483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119All H-atom parameters refined
S = 1.11Δρmax = 0.59 e Å3
8778 reflectionsΔρmin = 0.35 e Å3
267 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.230183 (15)0.56482 (3)0.19687 (4)0.01973 (7)
Cl20.408666 (15)0.33929 (3)0.01835 (4)0.02087 (7)
Cl30.277057 (17)0.19701 (3)0.08651 (5)0.02505 (8)
Cl40.139656 (17)0.28579 (3)0.12100 (4)0.02431 (7)
N10.39159 (5)0.59732 (9)0.11036 (12)0.01616 (17)
N20.30364 (5)0.74383 (9)0.08414 (12)0.01681 (17)
N30.21167 (5)0.49059 (9)0.24250 (12)0.01686 (17)
N40.08344 (5)0.42781 (9)0.09017 (13)0.01902 (19)
C10.40036 (6)0.72039 (10)0.10598 (14)0.01538 (19)
C20.45443 (6)0.77568 (11)0.20007 (15)0.0180 (2)
C30.46254 (7)0.89969 (11)0.19571 (16)0.0202 (2)
C40.41789 (7)0.97290 (11)0.09745 (16)0.0205 (2)
C50.36555 (7)0.92203 (10)0.00467 (15)0.0181 (2)
C60.35580 (6)0.79460 (10)0.00883 (14)0.01560 (19)
C70.29618 (6)0.62669 (10)0.07490 (14)0.01589 (19)
C80.33959 (6)0.55012 (10)0.02467 (14)0.01502 (18)
C90.33274 (6)0.41522 (10)0.03069 (15)0.01644 (19)
C100.27542 (6)0.35370 (10)0.07344 (15)0.0173 (2)
C110.20886 (6)0.41146 (10)0.12282 (14)0.01590 (19)
C120.14274 (6)0.38222 (10)0.04606 (14)0.0173 (2)
C130.08526 (6)0.50918 (11)0.21677 (15)0.0181 (2)
C140.02225 (7)0.56163 (13)0.26997 (17)0.0240 (2)
C150.02406 (8)0.64421 (14)0.39522 (19)0.0281 (3)
C160.08807 (8)0.67632 (13)0.47183 (19)0.0275 (3)
C170.15010 (7)0.62649 (12)0.42128 (16)0.0230 (2)
C180.14972 (6)0.54162 (10)0.29197 (14)0.01708 (19)
H20.4818 (9)0.7241 (16)0.265 (2)0.026 (4)*
H30.4954 (10)0.9394 (17)0.253 (2)0.039 (5)*
H40.4232 (9)1.0550 (17)0.094 (2)0.028 (5)*
H50.3373 (9)0.9670 (16)0.066 (2)0.027 (4)*
H140.0216 (9)0.5407 (16)0.215 (2)0.030 (5)*
H150.0164 (12)0.6781 (18)0.435 (3)0.041 (6)*
H160.0870 (10)0.7361 (18)0.559 (3)0.035 (5)*
H170.1949 (9)0.6476 (16)0.478 (2)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01985 (13)0.01898 (12)0.02025 (13)0.00230 (9)0.00389 (10)0.00064 (9)
Cl20.01669 (12)0.01806 (12)0.02796 (15)0.00393 (9)0.00359 (10)0.00006 (10)
Cl30.02286 (14)0.01315 (12)0.03931 (18)0.00158 (9)0.00726 (12)0.00199 (11)
Cl40.02400 (14)0.02459 (14)0.02439 (15)0.00171 (11)0.00284 (11)0.00901 (11)
N10.0155 (4)0.0167 (4)0.0163 (4)0.0010 (3)0.0017 (3)0.0000 (3)
N20.0176 (4)0.0160 (4)0.0169 (4)0.0001 (3)0.0009 (3)0.0005 (3)
N30.0165 (4)0.0152 (4)0.0190 (4)0.0001 (3)0.0029 (3)0.0008 (3)
N40.0170 (4)0.0209 (4)0.0192 (5)0.0002 (3)0.0011 (4)0.0016 (4)
C10.0148 (4)0.0158 (4)0.0155 (5)0.0010 (3)0.0024 (4)0.0005 (3)
C20.0162 (5)0.0204 (5)0.0174 (5)0.0008 (4)0.0001 (4)0.0016 (4)
C30.0189 (5)0.0204 (5)0.0213 (5)0.0033 (4)0.0009 (4)0.0026 (4)
C40.0230 (6)0.0158 (5)0.0227 (6)0.0016 (4)0.0030 (4)0.0008 (4)
C50.0205 (5)0.0151 (4)0.0186 (5)0.0011 (4)0.0015 (4)0.0007 (4)
C60.0145 (4)0.0163 (4)0.0161 (5)0.0006 (3)0.0022 (4)0.0002 (3)
C70.0149 (4)0.0167 (4)0.0161 (5)0.0007 (3)0.0005 (4)0.0007 (4)
C80.0145 (4)0.0149 (4)0.0157 (5)0.0013 (3)0.0021 (4)0.0007 (3)
C90.0158 (5)0.0145 (4)0.0190 (5)0.0017 (3)0.0018 (4)0.0005 (4)
C100.0171 (5)0.0139 (4)0.0210 (5)0.0012 (3)0.0027 (4)0.0008 (4)
C110.0158 (5)0.0137 (4)0.0183 (5)0.0005 (3)0.0028 (4)0.0016 (3)
C120.0183 (5)0.0164 (5)0.0174 (5)0.0004 (4)0.0019 (4)0.0017 (4)
C130.0181 (5)0.0189 (5)0.0172 (5)0.0021 (4)0.0012 (4)0.0001 (4)
C140.0178 (5)0.0288 (6)0.0255 (6)0.0051 (4)0.0014 (5)0.0020 (5)
C150.0243 (6)0.0317 (7)0.0286 (7)0.0078 (5)0.0054 (5)0.0047 (5)
C160.0282 (7)0.0267 (6)0.0280 (7)0.0018 (5)0.0068 (5)0.0085 (5)
C170.0221 (6)0.0228 (5)0.0241 (6)0.0016 (4)0.0024 (5)0.0059 (5)
C180.0177 (5)0.0157 (4)0.0179 (5)0.0007 (4)0.0021 (4)0.0003 (4)
Geometric parameters (Å, º) top
Cl1—C71.7362 (11)C4—H40.908 (18)
Cl2—C91.7250 (12)C5—C61.4130 (15)
Cl3—C101.7253 (11)C5—H50.927 (18)
Cl4—C121.7310 (12)C7—C81.4289 (15)
N1—C81.3149 (15)C8—C91.4889 (15)
N1—C11.3632 (14)C9—C101.3374 (16)
N2—C71.2974 (15)C10—C111.4819 (16)
N2—C61.3646 (15)C11—C121.4393 (16)
N3—C111.3108 (15)C13—C141.4086 (17)
N3—C181.3754 (15)C13—C181.4146 (17)
N4—C121.2941 (16)C14—C151.370 (2)
N4—C131.3692 (16)C14—H140.974 (18)
C1—C61.4156 (15)C15—C161.411 (2)
C1—C21.4169 (16)C15—H150.92 (2)
C2—C31.3720 (17)C16—C171.3739 (19)
C2—H20.934 (18)C16—H160.97 (2)
C3—C41.4153 (18)C17—C181.4111 (17)
C3—H30.89 (2)C17—H170.994 (18)
C4—C51.3669 (17)
C8—N1—C1117.99 (10)C10—C9—Cl2120.67 (9)
C7—N2—C6116.94 (10)C8—C9—Cl2113.54 (8)
C11—N3—C18117.65 (10)C9—C10—C11124.28 (10)
C12—N4—C13116.81 (10)C9—C10—Cl3120.43 (9)
N1—C1—C6120.87 (10)C11—C10—Cl3115.17 (8)
N1—C1—C2119.99 (10)N3—C11—C12120.10 (10)
C6—C1—C2119.13 (10)N3—C11—C10117.49 (10)
C3—C2—C1119.56 (11)C12—C11—C10122.40 (10)
C3—C2—H2123.7 (11)N4—C12—C11123.88 (11)
C1—C2—H2116.7 (11)N4—C12—Cl4115.93 (9)
C2—C3—C4120.80 (11)C11—C12—Cl4120.14 (9)
C2—C3—H3123.4 (12)N4—C13—C14119.24 (11)
C4—C3—H3115.8 (12)N4—C13—C18120.48 (11)
C5—C4—C3120.93 (11)C14—C13—C18120.27 (11)
C5—C4—H4118.1 (11)C15—C14—C13119.33 (12)
C3—C4—H4121.0 (11)C15—C14—H14121.1 (11)
C4—C5—C6119.17 (11)C13—C14—H14119.5 (11)
C4—C5—H5122.9 (11)C14—C15—C16120.76 (13)
C6—C5—H5117.9 (11)C14—C15—H15121.1 (13)
N2—C6—C5119.15 (10)C16—C15—H15118.0 (13)
N2—C6—C1120.45 (10)C17—C16—C15120.76 (13)
C5—C6—C1120.40 (10)C17—C16—H16121.3 (11)
N2—C7—C8123.65 (10)C15—C16—H16117.9 (11)
N2—C7—Cl1115.75 (8)C16—C17—C18119.60 (12)
C8—C7—Cl1120.58 (8)C16—C17—H17120.4 (10)
N1—C8—C7120.03 (10)C18—C17—H17120.0 (10)
N1—C8—C9116.17 (10)N3—C18—C17119.66 (11)
C7—C8—C9123.69 (10)N3—C18—C13121.06 (10)
C10—C9—C8125.76 (10)C17—C18—C13119.27 (11)
C8—N1—C1—C61.53 (16)C8—C9—C10—Cl3176.06 (9)
C8—N1—C1—C2178.18 (11)Cl2—C9—C10—Cl32.01 (15)
N1—C1—C2—C3179.56 (11)C18—N3—C11—C121.06 (16)
C6—C1—C2—C30.15 (17)C18—N3—C11—C10178.07 (10)
C1—C2—C3—C40.48 (19)C9—C10—C11—N354.58 (17)
C2—C3—C4—C50.10 (19)Cl3—C10—C11—N3121.43 (10)
C3—C4—C5—C60.62 (19)C9—C10—C11—C12126.31 (13)
C7—N2—C6—C5179.23 (11)Cl3—C10—C11—C1257.69 (14)
C7—N2—C6—C11.88 (16)C13—N4—C12—C110.56 (17)
C4—C5—C6—N2179.84 (11)C13—N4—C12—Cl4176.74 (9)
C4—C5—C6—C10.94 (18)N3—C11—C12—N41.63 (18)
N1—C1—C6—N20.85 (17)C10—C11—C12—N4177.46 (11)
C2—C1—C6—N2179.44 (11)N3—C11—C12—Cl4175.56 (9)
N1—C1—C6—C5179.73 (11)C10—C11—C12—Cl45.35 (16)
C2—C1—C6—C50.56 (17)C12—N4—C13—C14179.97 (12)
C6—N2—C7—C80.66 (17)C12—N4—C13—C180.90 (17)
C6—N2—C7—Cl1179.12 (9)N4—C13—C14—C15179.18 (13)
C1—N1—C8—C72.74 (16)C18—C13—C14—C150.05 (19)
C1—N1—C8—C9178.96 (10)C13—C14—C15—C160.5 (2)
N2—C7—C8—N11.74 (18)C14—C15—C16—C170.7 (2)
Cl1—C7—C8—N1176.65 (9)C15—C16—C17—C180.4 (2)
N2—C7—C8—C9177.66 (11)C11—N3—C18—C17179.47 (11)
Cl1—C7—C8—C90.73 (16)C11—N3—C18—C130.36 (16)
N1—C8—C9—C10124.93 (13)C16—C17—C18—N3179.24 (12)
C7—C8—C9—C1059.01 (18)C16—C17—C18—C130.11 (19)
N1—C8—C9—Cl253.26 (13)N4—C13—C18—N31.41 (18)
C7—C8—C9—Cl2122.81 (11)C14—C13—C18—N3179.47 (11)
C8—C9—C10—C110.3 (2)N4—C13—C18—C17179.47 (11)
Cl2—C9—C10—C11177.81 (9)C14—C13—C18—C170.35 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N2i0.995 (17)2.454 (17)3.2609 (16)137.8 (13)
C16—H16···Cg1ii0.97 (2)3.00 (2)3.9664 (16)176.0 (16)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H8Cl4N4
Mr422.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.0972 (5), 10.9883 (3), 8.1905 (2)
β (°) 90.782 (1)
V3)1718.58 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.79 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.608, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
72483, 8778, 6556
Rint0.061
(sin θ/λ)max1)0.851
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.11
No. of reflections8778
No. of parameters267
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.59, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N2i0.995 (17)2.454 (17)3.2609 (16)137.8 (13)
C16—H16···Cg1ii0.97 (2)3.00 (2)3.9664 (16)176.0 (16)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank USM for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST, Government of India [SR/S1/OC-13/2005] for financial support. ACM also thanks the UGC, Government of India, for a fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Maity, A. C., Chakrabarty, R. & Goswami, S. (2009). Acta Cryst. E65, o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Maity, A. C. & Fun, H.-K. (2007). Chem. Lett. 36, 552–553  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds