organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,9-Dimeth­­oxy-3,4-di­hydro-1H-1,4-oxazino[4,3-a]indol-1-one

aDepartamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, 702843 Santiago de Chile, Chile
*Correspondence e-mail: cosalas@puc.cl

(Received 20 December 2010; accepted 4 January 2011; online 12 January 2011)

The title compound, C13H13NO4, is one cyclization product of the reaction of ethyl 1-(2-bromo­eth­yl)-4,7-dimeth­oxy-1H-indole-2-carboxyl­ate with sodium azide in refluxing dioxane and was synthesized with the aim of finding new compounds with biological properties. Bond lengths and angles are within the expected values and confirm the bond orders giving in the scheme. The shortest contacts between mol­ecules are set along the a axis, where stacked mol­ecules related by an inversion center form an ABAB array through ππ stacking inter­actions with centroid–centroid distances ranging from 3.922 (2) to 4.396 (2) Å. Weak C—H⋯O hydrogen bonds further stabilize the structure.

Related literature

For background to oxazinoindoles as inter­mediates in the chemistry of bioactive compounds, see: Demerson et al. (1975[Demerson, C. A., Santroch, G., Humber, L. G. & Charest, M. P. (1975). J. Med. Chem. 18, 577-580.]); Fedouloff et al. (2001[Fedouloff, M., Hossner, F., Voyle, M., Ranson, J., Powles, J., Riley, G. & Sanger, G. (2001). Bioorg. Med. Chem. 9, 2119-2128.]); Shchekotikhin et al. (2004[Shchekotikhin, A. E., Buyanov, B. N. & Preobrazhenskay, M. N. (2004). Bioorg. Med. Chem. 12, 3923-3930.]). Several synthetic strategies for the preparation of oxazinoindoles have been reported, for some examples, see: Abbiati et al. (2005[Abbiati, G., Canevari, V., Caimi, S. & Rossi, E. (2005). Tetrahedron Lett. 46, 7117-7120.]); Brudeli et al. (2010[Brudeli, B., Román Moltzau, L., Wessel Andressen, K., Krobert, K. A., Klaveness, J. & Olav Levy, F. (2010). Bioorg. Med. Chem. 18, 8600-8613.]); Fu et al. (2010[Fu, W., Zhu, M. & Zou, G. (2010). Appl. Organomet. Chem. 24, 499-502.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO4

  • Mr = 247.24

  • Monoclinic, P 21 /c

  • a = 8.414 (2) Å

  • b = 6.9722 (19) Å

  • c = 19.331 (5) Å

  • β = 101.276 (4)°

  • V = 1112.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.72 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.972

  • 10088 measured reflections

  • 2277 independent reflections

  • 1922 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.06

  • 2277 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2a⋯O16 0.99 2.40 2.9776 (18) 117
C3—H3B⋯O14i 0.99 2.56 3.2524 (19) 127 (4)
C15—H15B⋯O5ii 0.98 2.56 3.493 (2) 159 (4)
C17—H17A⋯O5iii 0.98 2.59 3.484 (2) 151 (4)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y-1, -z+2; (iii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxazinoindoles are very important as precursors of a wide range of natural and synthetic products with relevant biological properties such as antidepressant activity (Demerson et al., 1975), 5-HT4 Receptor Antagonist (Fedouloff et al., 2001), antiproliferative activity (Shchekotikhin et al., 2004). The oxazinoindolone 2 is the product of the cyclization of ethyl 1-(2-bromoethyl)-4,7-dimethoxy-1H-indole-2-carboxylate mediated by the azido intermediate in dioxane at reflux (Fig. 2). Other efficient cyclizations have been reported also (Abbiati et al.,2005; Brudeli et al., 2010; Fu et al., 2010). The molecular structure of the title compound is represented in Fig. 1. Bond lengths and angles are within the expected values and confirm the bond orders giving in the Scheme. The e.s.d. for the molecular plane, as well as the bond distances and angles for the indol fragment, are within the expected values for bicyclic aromatic systems [r.m.s deviation = 0.006 (1) Å]. The shortest contacts between molecules are set along the crystallographic axis a, where the stacked molecules related by an inversion center form an ABAB array. Centroid to centroid distances range from 3.922 (2) to 4.396 (2)Å (Table 2). Weak C–H···O hydrogen bonds further stabilize the structure (Table 1).

Related literature top

For background to oxazinoindoles as intermediates in the chemistry of bioactive compounds, see: Demerson et al. (1975); Fedouloff et al. (2001); Shchekotikhin et al. (2004). Several synthetic strategies for the preparation of oxazinoindoles have been reported, for some examples, see: Abbiati et al. (2005); Brudeli et al. (2010); Fu et al. (2010).

Experimental top

6,9-Dimethoxy-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2)

Sodium azide (40 mg, 0.62 mmol) was added to a solution of ethyl 1-(2-bromoethyl)-4,7-dimethoxy-1H-indole-2-carboxylate 1 (100 mg, 0.28 mmol) in dioxane (5.0 ml) and the mixture was stirred at reflux for 4 days. The suspension was filtered and the solvent was removed in vacuum to give a residue, which was purified by flash column chromatography (CH2Cl2) to give 6,9-dimethoxy-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2) (27 mg, 39%) as a white solid. mp: 419.0–419.5 K (Fig. 3).

Refinement top

H atoms were placed in idealized positions with C—H distances 0.95 – 0.98 Å and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached C atom (1.5 for the methyl groups).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms with arbitrary radius.
[Figure 2] Fig. 2. Intermolecular interactions in the crystal structure of the title compound, A) hydrogen-bonds, B) weak π-π interactions.
[Figure 3] Fig. 3. Reaction scheme for the preparation of molecule 2.
6,9-Dimethoxy-3,4-dihydro-1H-1,4-oxazino[4,3-a]indol-1-one top
Crystal data top
C13H13NO4Dx = 1.477 Mg m3
Mr = 247.24Melting point = 419.0–419.5 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.414 (2) ÅCell parameters from 1832 reflections
b = 6.9722 (19) Åθ = 2.5–27.5°
c = 19.331 (5) ŵ = 0.11 mm1
β = 101.276 (4)°T = 100 K
V = 1112.1 (5) Å3Prism, colourless
Z = 40.72 × 0.27 × 0.26 mm
F(000) = 520
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Radiation source: fine-focus sealed tube1922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.925, Tmax = 0.972k = 08
10088 measured reflectionsl = 024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.3721P]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H13NO4V = 1112.1 (5) Å3
Mr = 247.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.414 (2) ŵ = 0.11 mm1
b = 6.9722 (19) ÅT = 100 K
c = 19.331 (5) Å0.72 × 0.27 × 0.26 mm
β = 101.276 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1922 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.972Rint = 0.030
10088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2277 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Experimental. 6,9-Dimethoxy-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-one (2) IR (NaCl, cm-1): 1730 (CO). 1H RMN (CDCl3, 200 MHz) d 3.89 (s, 6H, 3xOCH3); 4.63–4.76 (m, 4H, 2xCH2); 6.34 (d, 1H, J =8.3 Hz, H-6); 6.61 (d, 1H, J =8.3 Hz, H7); 7.50 (s, 1H, H9). 13C RMN (CDCl3, 50 MHz) d 42.8 (CH2); 55.6 (OCH3); 55.7 (OCH3); 66.9 (CH2); 99.1 (C9); 105.5 (C6); 108.5 (C7); 120.3 (C8a); 123.0 (C9a); 128.1 (C5a); 142.1 (C5); 148.7 (C8); 159.7 (CO). MS (CI) m/z 248.1 [(M+1)+, 100].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.79680 (13)0.12018 (17)0.99864 (6)0.0178 (3)
C20.86881 (15)0.3060 (2)1.02003 (7)0.0199 (3)
H2A0.86310.39070.97850.024*
H2B0.98390.29081.04320.024*
C30.77300 (16)0.3898 (2)1.07063 (7)0.0212 (3)
H3A0.81960.51571.08740.025*
H3B0.65980.41101.04580.025*
O40.77361 (12)0.26469 (14)1.13077 (5)0.0230 (2)
O50.69846 (12)0.01995 (15)1.16341 (5)0.0258 (3)
C50.72921 (15)0.0798 (2)1.11666 (7)0.0197 (3)
C60.72754 (15)0.0118 (2)1.04487 (7)0.0183 (3)
C70.66807 (15)0.1555 (2)1.01289 (7)0.0182 (3)
H70.61380.25421.03300.022*
C80.70291 (15)0.1534 (2)0.94399 (7)0.0179 (3)
C90.67102 (15)0.2832 (2)0.88665 (7)0.0192 (3)
C100.72240 (16)0.2367 (2)0.82573 (7)0.0221 (3)
H100.70250.32270.78690.026*
C110.80488 (16)0.0619 (2)0.81999 (8)0.0225 (3)
H110.83940.03400.77710.027*
C120.83662 (15)0.0683 (2)0.87398 (7)0.0195 (3)
C130.78441 (15)0.0205 (2)0.93686 (7)0.0176 (3)
O140.59004 (11)0.44721 (14)0.89811 (5)0.0225 (2)
C150.52860 (17)0.5606 (2)0.83664 (8)0.0259 (3)
H15A0.45980.48060.80120.039*
H15B0.46470.66750.84960.039*
H15C0.61940.61090.81720.039*
O160.91115 (11)0.24306 (15)0.87236 (5)0.0228 (3)
C170.94995 (18)0.2967 (2)0.80615 (7)0.0256 (3)
H17A1.03700.21420.79610.038*
H17B0.98560.43070.80830.038*
H17C0.85380.28190.76870.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0153 (5)0.0198 (6)0.0184 (6)0.0006 (4)0.0035 (4)0.0009 (4)
C20.0163 (6)0.0198 (7)0.0227 (7)0.0024 (5)0.0019 (5)0.0000 (6)
C30.0218 (7)0.0199 (7)0.0212 (7)0.0007 (5)0.0023 (5)0.0006 (6)
O40.0275 (5)0.0220 (5)0.0192 (5)0.0008 (4)0.0039 (4)0.0007 (4)
O50.0297 (5)0.0293 (6)0.0185 (5)0.0027 (4)0.0049 (4)0.0024 (4)
C50.0145 (6)0.0228 (7)0.0208 (7)0.0019 (5)0.0010 (5)0.0003 (6)
C60.0143 (6)0.0220 (7)0.0185 (7)0.0032 (5)0.0031 (5)0.0034 (5)
C70.0137 (6)0.0200 (7)0.0204 (7)0.0020 (5)0.0023 (5)0.0024 (5)
C80.0115 (6)0.0215 (7)0.0201 (7)0.0035 (5)0.0013 (5)0.0014 (5)
C90.0127 (6)0.0209 (7)0.0235 (7)0.0018 (5)0.0020 (5)0.0010 (6)
C100.0175 (7)0.0271 (8)0.0214 (7)0.0021 (6)0.0032 (5)0.0051 (6)
C110.0180 (6)0.0299 (8)0.0206 (7)0.0029 (6)0.0062 (5)0.0010 (6)
C120.0134 (6)0.0241 (7)0.0213 (7)0.0013 (5)0.0040 (5)0.0024 (6)
C130.0127 (6)0.0214 (7)0.0180 (7)0.0028 (5)0.0013 (5)0.0002 (5)
O140.0210 (5)0.0230 (5)0.0232 (5)0.0037 (4)0.0040 (4)0.0039 (4)
C150.0229 (7)0.0273 (8)0.0273 (8)0.0038 (6)0.0044 (6)0.0083 (6)
O160.0222 (5)0.0270 (6)0.0200 (5)0.0043 (4)0.0063 (4)0.0019 (4)
C170.0237 (7)0.0331 (9)0.0212 (7)0.0012 (6)0.0076 (6)0.0053 (6)
Geometric parameters (Å, º) top
N1—C131.3678 (17)C9—C101.370 (2)
N1—C61.3830 (17)C9—O141.3712 (17)
N1—C21.4557 (18)C10—C111.418 (2)
C2—C31.5019 (19)C10—H100.9500
C2—H2A0.9900C11—C121.369 (2)
C2—H2B0.9900C11—H110.9500
C3—O41.4525 (17)C12—O161.3736 (18)
C3—H3A0.9900C12—C131.4108 (19)
C3—H3B0.9900O14—C151.4365 (17)
O4—C51.3552 (18)C15—H15A0.9800
O5—C51.2077 (17)C15—H15B0.9800
C5—C61.4638 (19)C15—H15C0.9800
C6—C71.368 (2)O16—C171.4310 (17)
C7—C81.4188 (19)C17—H17A0.9800
C7—H70.9500C17—H17B0.9800
C8—C131.413 (2)C17—H17C0.9800
C8—C91.4156 (19)
C13—N1—C6108.48 (12)C10—C9—C8118.59 (13)
C13—N1—C2131.04 (12)O14—C9—C8115.52 (12)
C6—N1—C2120.48 (12)C9—C10—C11120.80 (13)
N1—C2—C3106.52 (11)C9—C10—H10119.6
N1—C2—H2A110.4C11—C10—H10119.6
C3—C2—H2A110.4C12—C11—C10122.39 (13)
N1—C2—H2B110.4C12—C11—H11118.8
C3—C2—H2B110.4C10—C11—H11118.8
H2A—C2—H2B108.6C11—C12—O16126.33 (13)
O4—C3—C2111.70 (11)C11—C12—C13116.95 (13)
O4—C3—H3A109.3O16—C12—C13116.70 (12)
C2—C3—H3A109.3N1—C13—C12130.47 (13)
O4—C3—H3B109.3N1—C13—C8107.84 (12)
C2—C3—H3B109.3C12—C13—C8121.69 (12)
H3A—C3—H3B107.9C9—O14—C15115.79 (11)
C5—O4—C3116.89 (11)O14—C15—H15A109.5
O5—C5—O4119.21 (13)O14—C15—H15B109.5
O5—C5—C6124.02 (14)H15A—C15—H15B109.5
O4—C5—C6116.73 (12)O14—C15—H15C109.5
C7—C6—N1109.68 (12)H15A—C15—H15C109.5
C7—C6—C5129.72 (13)H15B—C15—H15C109.5
N1—C6—C5120.58 (13)C12—O16—C17115.93 (11)
C6—C7—C8106.91 (12)O16—C17—H17A109.5
C6—C7—H7126.5O16—C17—H17B109.5
C8—C7—H7126.5H17A—C17—H17B109.5
C13—C8—C9119.58 (13)O16—C17—H17C109.5
C13—C8—C7107.08 (12)H17A—C17—H17C109.5
C9—C8—C7133.33 (13)H17B—C17—H17C109.5
C10—C9—O14125.89 (13)
C13—N1—C2—C3149.07 (13)O14—C9—C10—C11179.79 (12)
C6—N1—C2—C332.03 (15)C8—C9—C10—C110.4 (2)
N1—C2—C3—O457.70 (13)C9—C10—C11—C120.3 (2)
C2—C3—O4—C552.35 (15)C10—C11—C12—O16177.91 (12)
C3—O4—C5—O5166.24 (12)C10—C11—C12—C130.5 (2)
C3—O4—C5—C615.92 (16)C6—N1—C13—C12179.71 (13)
C13—N1—C6—C71.05 (15)C2—N1—C13—C120.7 (2)
C2—N1—C6—C7179.83 (11)C6—N1—C13—C81.00 (14)
C13—N1—C6—C5177.50 (11)C2—N1—C13—C8180.00 (12)
C2—N1—C6—C51.62 (18)C11—C12—C13—N1179.28 (13)
O5—C5—C6—C712.2 (2)O16—C12—C13—N10.7 (2)
O4—C5—C6—C7170.05 (13)C11—C12—C13—C80.07 (19)
O5—C5—C6—N1166.01 (12)O16—C12—C13—C8178.48 (11)
O4—C5—C6—N111.72 (18)C9—C8—C13—N1178.81 (11)
N1—C6—C7—C80.66 (14)C7—C8—C13—N10.59 (14)
C5—C6—C7—C8177.72 (12)C9—C8—C13—C120.56 (19)
C6—C7—C8—C130.04 (14)C7—C8—C13—C12179.96 (12)
C6—C7—C8—C9179.33 (13)C10—C9—O14—C1512.25 (19)
C13—C8—C9—C100.77 (18)C8—C9—O14—C15167.92 (12)
C7—C8—C9—C10179.98 (13)C11—C12—O16—C173.90 (19)
C13—C8—C9—O14179.38 (11)C13—C12—O16—C17174.50 (11)
C7—C8—C9—O140.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2a···O160.992.402.9776 (18)117
C3—H3B···O14i0.992.563.2524 (19)127 (4)
C15—H15B···O5ii0.982.563.493 (2)159 (4)
C17—H17A···O5iii0.982.593.484 (2)151 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1, z+2; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC13H13NO4
Mr247.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.414 (2), 6.9722 (19), 19.331 (5)
β (°) 101.276 (4)
V3)1112.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.72 × 0.27 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.925, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10088, 2277, 1922
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.06
No. of reflections2277
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2a···O160.992.402.9776 (18)117
C3—H3B···O14i0.992.563.2524 (19)127 (4)
C15—H15B···O5ii0.982.563.493 (2)159 (4)
C17—H17A···O5iii0.982.593.484 (2)151 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1, z+2; (iii) x+2, y, z+2.
Weak π-π intermolecular interactions. top
CgI-CgJ*CgI-CgJ(Å)**Alpha(°)***Beta(°)****CgI_Perp(Å)*****
Cg(1)-Cg(1)4.1164 (14)(a)034.50-3.3925 (6)
Cg(1)-Cg(1)4.3962 (14)(b)035.723.5692 (6)
Cg(1)-Cg(3)4.6434 (15)(b)0.50 (7)40.183.5476 (6)
*Centroid plane numbers **Distance between ring centroids of planar cycles I and J. ***Dihedral angle between stacking planes. ****Angle CgI-->CgJ and normal to plane I. *****Perpendicular distance of CgI on ring J.

Symmetry relationships: (a)1-x,-y,2-z (b)2-x,-y,2-z
 

Acknowledgements

We gratefully acknowledge the Unidade de Raios X, RIAIDT, University of Santi­ago de Compostela, Spain.

References

First citationAbbiati, G., Canevari, V., Caimi, S. & Rossi, E. (2005). Tetrahedron Lett. 46, 7117–7120.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrudeli, B., Román Moltzau, L., Wessel Andressen, K., Krobert, K. A., Klaveness, J. & Olav Levy, F. (2010). Bioorg. Med. Chem. 18, 8600–8613.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemerson, C. A., Santroch, G., Humber, L. G. & Charest, M. P. (1975). J. Med. Chem. 18, 577–580.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFedouloff, M., Hossner, F., Voyle, M., Ranson, J., Powles, J., Riley, G. & Sanger, G. (2001). Bioorg. Med. Chem. 9, 2119–2128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFu, W., Zhu, M. & Zou, G. (2010). Appl. Organomet. Chem. 24, 499–502.  Web of Science CrossRef CAS Google Scholar
First citationShchekotikhin, A. E., Buyanov, B. N. & Preobrazhenskay, M. N. (2004). Bioorg. Med. Chem. 12, 3923–3930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds