organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-*tert*-Butylpyridinium triiodide–4-*tert*butylpyridine (1/1)

Hongshan He^a* and Andrew G. Sykes^b

^aCenter for Advanced Photovoltaics, Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA, and ^bDepartment of Chemistry, University of South Dakota, Vermillion, SD 57069, USA Correspondence e-mail: hongshan.he@sdstate.edu

Received 21 December 2010; accepted 10 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.037; wR factor = 0.090; data-to-parameter ratio = 18.6.

The title compound, $C_9H_{14}N^+\cdot I_3^-\cdot C_9H_{13}N$, consists of monoprotonated 4-*tert*-butylpyridinium cations and triiodide anions. The triiodide ion has near-symmetric linear geometry, with bond lengths of 2.9105 (4) Å (I–I) and a bond angle of 177.55 (3)° (I–I–I). For this room-temperature structure, the butyl group on the pyridine ring is disordered and has been treated as a rigid rotator, modeled in three separate positions with 1/3, 1/3, 1/3 occupancies. The cations assemble into dimeric forms by way of N–H···N hydrogen bonds.

Related literature

For applications of the 4-*t*-butylpyridine and iodide/triiodide system in dye-sensitized solar cells see: Campbell *et al.* (2004); Lee *et al.* (2010); Wang *et al.* (2005). For related structures, see: Fialho *et al.* (1996); Kochel (2006).

Experimental

Crystal data $C_9H_{14}N^+ \cdot I_3^- \cdot C_9H_{13}N$ $M_r = 652.12$ Tetragonal, $P4_2/n$ a = 11.6862 (4) Å

c = 17.1665 (13) Å $V = 2344.4 (2) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

 $0.55 \times 0.50 \times 0.40 \text{ mm}$

 $\mu = 4.00 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII CCD area-detector	23722 measured reflections
diffractometer	2217 independent reflections
Absorption correction: multi-scan	1758 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2006)	$R_{\rm int} = 0.027$
$T_{\rm min} = 0.217, T_{\rm max} = 0.298$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.090 & \text{independent and constrained} \\ S &= 1.04 & \text{refinement} \\ 2217 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.80 \text{ e } \text{\AA}^{-3} \\ 119 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.77 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H99 \cdots N1^i$	0.90	1.76	2.655 (7)	172
	. 1 . 3			

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, z$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *WinGX* (Farrugia, 1999) and *publCIF* (Westrip, 2010).

This material is based upon work supported by the National Science Foundation/EPSCoR grant No. 0903804 and by the State of South Dakota.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5091).

References

- Bruker (2006). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campbell, W. M., Burrell, A. K., Officer, D. L. & Jolley, K. W. (2004). Coord. Chem. Rev. 248, 1363–1379.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fialho De Assis, E., Howie, R. A. & Wardell, J. L. (1996). Acta Cryst. C52, 955– 957.
- Kochel, A. (2006). Acta Cryst. E62, o5605-o5606.
- Lee, C.-P., Chen, P.-Y., Vittala, R. & Ho, K.-C. (2010). J. Mater. Chem. 20, 2356–2361.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, H., Li, H., Xue, B., Wang, Z., Meng, Q. & Chen, L. (2005). J. Am. Chem. Soc. 127, 6394–6401.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o434 [doi:10.1107/S1600536811001371]

4-*tert*-Butylpyridinium triiodide–4-*tert*-butylpyridine (1/1)

Hongshan He and Andrew G. Sykes

S1. Comment

4 - *t*-Butylpyridine is usually added into an iodide/triiodide electrolyte solution to enhance the photovoltaic performance of dye-sensitized solar cells. The solution is a mixture of iodide, lithium iodide, 4 - *t*-butylpyridine, and guanidinium thiocyanate (Campbell *et al.*, 2004; Lee *et al.*, 2010). Alternatively, the electrolyte can be prepared by the reaction between 2-hydroxypropionitrile and lithium iodide (Wang *et al.*, 2005). It was proposed that triiodide was produced during the reaction; however, no direct evidence was obtained. Reported here is the structure of the resulting compound.

In the molecule of the title compound, three iodide atoms in triiodide ion are in a linear geometry (Fig. 1). The I1—I2 bond length is 2.9105 (4)Å and the I2—I1—I2 angle is 177.55 (3)°. The triiodide bond is almost parallel to the pyridyl ring. In each asymmetric unit cell, two pairs of triiodide ions are perpendicular to each other (Fig. 2 and Fig. 3). The cations assemble into dimeric forms by way of N—H···N hydrogen bonds (Fig. 4, Table 1).

S2. Experimental

2-Hydroxypropionitrile (6.1 g) and lithium iodide (10 g) was added to a flask. The resulting mixture was heated to 120°C in a sealed high pressure tube for 30 minutes. When the temperature decreased to 70°C, silica powder with diameter 25 μ m (1.3 g), 4 - *t*-butylpyridine (1.0 g), and ethanol (3 ml) were added. The mixture was stirred by a mechanical stirrer at 50°C for 30 minutes. Red crystals were obtained from the resulting mixture in one month.

S3. Refinement

The hydrogen that binds to N atom is refined and other hydrogen atoms are geometrically constrained and refined in riding mode as follows: methyl d(C-H) = 0.96 Å, Uĩso~(H) = 1.5U~eq~(C); aromatic d(C-H) = 0.93 Å, Uĩso~(H) = 1.2U~eq~(C). The butyl group on the pyridine ring is disordered and has been treated as a rigid rotator, modeled in three separate positions with 1/3,1/3, and 1/3 occupancies. All atoms involved have been refined isotropically.

The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.

Figure 2

Packing diagram of the title compound, viewed down the a axis.

Figure 3

Packing diagram of the title compound, viewed down the c axis.

Figure 4

Packing diagram of the title compound showing the hydrogen bonding.

4-tert-Butylpyridinium triiodide-4-tert-butylpyridine (1/1)

Crystal data	
$C_9H_{14}N^+ \cdot I_3^- \cdot C_9H_{13}N$	V = 2344.4 (2) Å ³
$M_r = 652.12$	Z = 4
Tetragonal, $P4_2/n$	F(000) = 1232
Hall symbol: -P 4bc	$D_{\rm x} = 1.848 {\rm ~Mg} {\rm ~m}^{-3}$
a = 11.6862 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 17.1665 (13) Å	Cell parameters from 9942 reflections

 $\theta = 2.4-25.6^{\circ}$ $\mu = 4.00 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.217, T_{\max} = 0.298$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent
$wR(F^2) = 0.090$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 5.5874P]$
2217 reflections	where $P = (F_o^2 + 2F_c^2)/3$
119 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.80 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.77 \ { m e} \ { m \AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.00208 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, red

 $R_{\rm int} = 0.027$

 $h = -14 \rightarrow 14$

 $k = -14 \rightarrow 14$

 $l = -20 \rightarrow 20$

 $0.55 \times 0.50 \times 0.40 \text{ mm}$

 $\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

23722 measured reflections

2217 independent reflections

1758 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.0501 (4)	0.9717 (5)	0.3368 (3)	0.0641 (12)	
H1	0.0502	1.0414	0.3107	0.077*	
C2	0.1482 (4)	0.9081 (6)	0.3407 (3)	0.0749 (15)	
H2	0.2140	0.9358	0.3169	0.090*	
C3	0.0595 (5)	0.7687 (5)	0.4119 (3)	0.0694 (14)	
H3	0.0625	0.6988	0.4376	0.083*	
C4	-0.0414 (4)	0.8291 (4)	0.4105 (3)	0.0608 (12)	
H4	-0.1055	0.8001	0.4360	0.073*	
C5	-0.0485 (4)	0.9329 (4)	0.3715 (2)	0.0505 (10)	
C6	-0.1613 (4)	0.9989 (4)	0.3681 (3)	0.0590 (12)	
C7	-0.179 (2)	1.059 (2)	0.2943 (13)	0.099 (7)*	0.33
H7A	-0.1554	1.0099	0.2521	0.148*	0.33

H7B	-0.1338	1.1273	0.2937	0.148*	0.33
H7C	-0.2582	1.0775	0.2886	0.148*	0.33
C8	-0.2650 (16)	0.9078 (16)	0.3731 (13)	0.077 (5)*	0.33
H8A	-0.2680	0.8641	0.3258	0.116*	0.33
H8B	-0.3359	0.9479	0.3801	0.116*	0.33
H8C	-0.2526	0.8573	0.4164	0.116*	0.33
C9	-0.1911 (15)	1.0409 (17)	0.4482 (9)	0.051 (4)*	0.33
H9A	-0.1303	1.0882	0.4675	0.076*	0.33
H9B	-0.2017	0.9767	0.4823	0.076*	0.33
H9C	-0.2606	1.0847	0.4459	0.076*	0.33
C7′	-0.144 (2)	1.125 (2)	0.3487 (17)	0.118 (8)*	0.33
H7′1	-0.1136	1.1639	0.3933	0.177*	0.33
H7′2	-0.2159	1.1584	0.3344	0.177*	0.33
H7′3	-0.0912	1.1316	0.3060	0.177*	0.33
C8′	-0.230 (2)	0.953 (2)	0.3061 (13)	0.091 (7)*	0.33
H8'1	-0.3007	0.9947	0.3031	0.136*	0.33
H8′2	-0.2453	0.8739	0.3159	0.136*	0.33
H8′3	-0.1894	0.9609	0.2577	0.136*	0.33
C9′	-0.2236 (18)	0.9924 (19)	0.4480 (12)	0.085 (6)*	0.33
H9′1	-0.1681	0.9934	0.4892	0.127*	0.33
H9′2	-0.2673	0.9230	0.4507	0.127*	0.33
H9′3	-0.2739	1.0569	0.4534	0.127*	0.33
C8"	-0.2550 (14)	0.9235 (14)	0.3301 (12)	0.052 (3)*	0.33
H8"1	-0.3257	0.9653	0.3282	0.078*	0.33
H8"2	-0.2653	0.8553	0.3604	0.078*	0.33
H8"3	-0.2321	0.9033	0.2782	0.078*	0.33
C7"	-0.1486 (14)	1.1071 (15)	0.3079 (11)	0.057 (4)*	0.33
H7"1	-0.0932	1.1602	0.3280	0.085*	0.33
H7"2	-0.2212	1.1449	0.3027	0.085*	0.33
H7"3	-0.1240	1.0798	0.2579	0.085*	0.33
C9"	-0.1668 (19)	1.0791 (19)	0.4363 (13)	0.085 (7)*	0.33
H9"1	-0.0907	1.1022	0.4504	0.127*	0.33
H9"2	-0.2021	1.0410	0.4796	0.127*	0.33
H9"3	-0.2110	1.1452	0.4224	0.127*	0.33
N1	0.1527 (4)	0.8086 (4)	0.3770 (3)	0.0699 (12)	
I1	0.2500	0.2500	0.38499 (3)	0.06646 (18)	
I2	0.05632 (4)	0.40649 (4)	0.38862 (3)	0.1013 (2)	
H99	0.220 (6)	0.772 (11)	0.381 (5)	0.09 (4)*	0.50
		~ /	~ /		

Atomic displacement parameters $(Å^2)$

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.060 (3)	0.068 (3)	0.065 (3)	-0.004 (2)	0.000 (2)	0.009 (2)
C2	0.048 (3)	0.102 (4)	0.074 (4)	-0.002 (3)	0.008 (3)	-0.001 (3)
C3	0.067 (3)	0.068 (3)	0.073 (3)	0.013 (3)	-0.004 (3)	0.008 (3)
C4	0.055 (3)	0.059 (3)	0.068 (3)	0.001 (2)	0.007 (2)	0.007 (2)
C5	0.050(2)	0.055 (3)	0.047 (2)	0.0031 (19)	-0.0037 (19)	-0.0077 (19)
C6	0.057 (3)	0.060 (3)	0.061 (3)	0.014 (2)	-0.006 (2)	-0.010 (2)

supporting information

N1	0.053 (3)	0.091 (3)	0.066 (3)	0.020 (2)	-0.005 (2)	-0.011 (2)
I1	0.0663 (3)	0.0676 (3)	0.0656 (3)	0.0000 (2)	0.000	0.000
I2	0.0790 (3)	0.1007 (4)	0.1243 (4)	0.0253 (2)	-0.0064 (3)	0.0184 (3)

Geometric parameters (Å, °)

C1—C2	1.368 (7)	C8—H8C	0.9600
C1—C5	1.375 (6)	С9—Н9А	0.9600
C1—H1	0.9300	С9—Н9В	0.9600
C2—N1	1.320 (7)	С9—Н9С	0.9600
C2—H2	0.9300	C7′—H7′1	0.9600
C3—N1	1.327 (7)	C7′—H7′2	0.9600
C3—C4	1.374 (7)	C7′—H7′3	0.9600
С3—Н3	0.9300	C8′—H8′1	0.9600
C4—C5	1.389 (6)	C8′—H8′2	0.9600
C4—H4	0.9300	C8′—H8′3	0.9600
C5—C6	1.528 (6)	С9′—Н9′1	0.9600
C6—C8′	1.44 (2)	С9′—Н9′2	0.9600
C6—C7	1.46 (2)	С9′—Н9′3	0.9600
C6—C9"	1.50 (2)	C8"—H8"1	0.9600
C6—C9	1.500 (16)	C8"—H8"2	0.9600
C6—C7′	1.52 (3)	C8"—H8"3	0.9600
C6—C8"	1.549 (16)	C7"—H7"1	0.9600
C6—C9′	1.55 (2)	C7"—H7"2	0.9600
C6—C8	1.614 (19)	С7"—Н7"3	0.9600
C6—C7"	1.641 (17)	С9"—Н9"1	0.9600
С7—Н7А	0.9600	С9"—Н9"2	0.9600
С7—Н7В	0.9600	С9"—Н9"3	0.9600
С7—Н7С	0.9600	N1—H99	0.90 (2)
C8—H8A	0.9600	I1—I2 ⁱ	2.9105 (4)
C8—H8B	0.9600	I1—I2	2.9105 (4)
C2C1C5	120.2 (5)	H7A—C7—H7C	109.5
C2	119.9	H7B—C7—H7C	109.5
C5—C1—H1	119.9	C6—C8—H8A	109.5
N1—C2—C1	122.4 (5)	C6—C8—H8B	109.5
N1—C2—H2	118.8	H8A—C8—H8B	109.5
C1—C2—H2	118.8	C6—C8—H8C	109.5
N1—C3—C4	121.1 (5)	H8A—C8—H8C	109.5
N1—C3—H3	119.4	H8B—C8—H8C	109.5
С4—С3—Н3	119.4	С6—С9—Н9А	109.5
C3—C4—C5	120.5 (5)	С6—С9—Н9В	109.5
С3—С4—Н4	119.7	H9A—C9—H9B	109.5
С5—С4—Н4	119.7	С6—С9—Н9С	109.5
C1—C5—C4	116.5 (4)	Н9А—С9—Н9С	109.5
C1—C5—C6	122.8 (4)	H9B—C9—H9C	109.5
C4—C5—C6	120.7 (4)	С6—С7′—Н7′1	109.5
C8′—C6—C9"	141.9 (13)	C6—C7′—H7′2	109.5

C7—C6—C9"	111.9 (14)	H7′1—C7′—H7′2	109.5
C8′—C6—C9	132.2 (12)	C6—C7′—H7′3	109.5
C7—C6—C9	127.3 (12)	H7′1—C7′—H7′3	109.5
C8'—C6—C7'	105.7 (14)	H7′2—C7′—H7′3	109.5
C9"—C6—C7′	64.7 (14)	C6—C8′—H8′1	109.5
C9—C6—C7′	85.2 (13)	C6—C8′—H8′2	109.5
C8′—C6—C5	108.8 (9)	H8'1—C8'—H8'2	109.5
C7—C6—C5	113.2 (10)	C6—C8′—H8′3	109.5
C9"—C6—C5	108.8 (9)	H8'1—C8'—H8'3	109.5
C9—C6—C5	109.3 (7)	H8′2—C8′—H8′3	109.5
C7'—C6—C5	112.3 (11)	С6—С9′—Н9′1	109.5
C7—C6—C8"	78.9 (12)	С6—С9′—Н9′2	109.5
C9"—C6—C8"	130.8 (11)	H9'1—C9'—H9'2	109.5
C9—C6—C8"	114.0 (11)	С6—С9'—Н9'3	109.5
C7'—C6—C8"	123.5 (13)	H9'1—C9'—H9'3	109.5
C5—C6—C8"	109.8 (6)	H9′2—C9′—H9′3	109.5
C8'—C6—C9'	112.1 (14)	С6—С8"—Н8"1	109.5
C7—C6—C9′	136.4 (12)	С6—С8"—Н8"2	109.5
C7'—C6—C9'	107.7 (14)	H8"1—C8"—H8"2	109.5
C5—C6—C9′	110.2 (8)	С6—С8"—Н8"3	109.5
C8"—C6—C9′	90.7 (11)	H8"1—C8"—H8"3	109.5
C7—C6—C8	104.9 (12)	H8"2—C8"—H8"3	109.5
C9"—C6—C8	109.8 (12)	С6—С7"—Н7"1	109.5
C9—C6—C8	89.6 (11)	С6—С7"—Н7"2	109.5
C7'—C6—C8	138.5 (13)	H7"1—C7"—H7"2	109.5
C5—C6—C8	108.2 (8)	С6—С7"—Н7"3	109.5
C9'—C6—C8	64.5 (11)	H7"1—C7"—H7"3	109.5
C8'—C6—C7"	82.5 (11)	H7"2—C7"—H7"3	109.5
C9"—C6—C7"	90.8 (11)	С6—С9"—Н9"1	109.5
C9—C6—C7"	110.2 (10)	С6—С9"—Н9"2	109.5
C5—C6—C7"	109.6 (7)	H9"1—C9"—H9"2	109.5
C8"—C6—C7"	103.7 (10)	С6—С9"—Н9"3	109.5
C9'—C6—C7"	129.5 (10)	H9"1—C9"—H9"3	109.5
C8—C6—C7"	127.6 (10)	Н9"2—С9"—Н9"3	109.5
С6—С7—Н7А	109.5	C2—N1—C3	119.3 (4)
С6—С7—Н7В	109.5	C2—N1—H99	120 (9)
H7A—C7—H7B	109.5	C3—N1—H99	121 (9)
С6—С7—Н7С	109.5	$I2^{i}$ —I1—I2	177.55 (3)

Symmetry code: (i) -x+1/2, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H99…N1 ⁱⁱ	0.90	1.76	2.655 (7)	172

Symmetry code: (ii) -x+1/2, -y+3/2, z.