organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Hy­dr­oxy-3-meth­­oxy­phen­yl)acrylic acid–2,3,5,6-tetra­methyl­pyrazine (2/1)

aDepartment of Physical Chemistry, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, People's Republic of China
*Correspondence e-mail: tanzaiyou@yahoo.com.cn

(Received 10 December 2010; accepted 7 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, C8H12N2·2C10H10O4, contains a tetra­methyl­pyrazine mol­ecule, situated about an inversion center, and two substituted acrylic acid derivatives. The dihedral angle between the phenyl and pyrazine rings is 69.45 (9)°. In the crystal, inter­molecular O—H⋯O, O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions lead to the formation of a supra­molecular network. The acrylic acid side chain is positionally disordered [occupancy ratio 0.852 (7):0.148 (7)].

Related literature

For the synthesis of the title compound, see: Tan (2004[Tan, Z. (2004). China Patent No. ZL00114239.9.]). For the biological properties of the title compound, see: Tan et al. (2003[Tan, Z., Jiang, T., Tang, C., Luo, J., Tan, H. & Chen, R. (2003). J. Chin. New Drugs, 12, 529-531.]).

[Scheme 1]

Experimental

Crystal data
  • 0.5C8H12N2·C10H10O4

  • Mr = 262.28

  • Monoclinic, P 21 /n

  • a = 9.4696 (7) Å

  • b = 5.7641 (4) Å

  • c = 24.3737 (15) Å

  • β = 93.654 (6)°

  • V = 1327.70 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 0.961

  • 4780 measured reflections

  • 2398 independent reflections

  • 2004 reflections with I > 2σi(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 1.09

  • 2398 reflections

  • 208 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.79 2.613 (5) 167
O4—H4⋯N1 0.82 1.97 2.749 (2) 158
C3—H3B⋯O4ii 0.98 2.58 3.553 (3) 174
C14—H14B⋯O4ii 0.98 2.59 3.465 (2) 148
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, tetramethylpyrazine ferulate is a pharmacologically significant compound which we found in some prescriptions of traditional Chinese medicine, and which are used to treat stroke patients. In both the invivo and invitro experiments, tetramethylpyrazine ferulate has a remarkable inhibitory effect on ADP induced platelet aggregation (Tan et al., 2003). In order to study further its pharmacological effects the title compound was synthesized by the reaction of 3-(4-hydroxy-3-methoxyphenyl)-2-acrylicacid with tetrathylpyrazine, and its crystal structure is reported on herein.

X-ray crystallographic analysis confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. The dihedral angle between the mean planes of the pyrazine ring and phenyl ring (C8—C13) is 69.45 (9)°.

In the crystal intermolecular O—H···N hydrogen bonds and weak C—H···O interactions are observed, leading to the formation of a supra-molecular network (Table 1).

Related literature top

For the synthesis of the title compound, see: Tan (2004). For the biological properties of the title compound, see: Tan et al. (2003).

Experimental top

The title compound was synthesized according to the published procedure (Tan, 2004). Tetramethylpyrazine (2.8 g) was heated with 3-(4-hydroxy-3-methoxyphenyl)-2-acrylicacid (4.0 g) in acetone (45 ml). After refluxing at 333 K for 1 h, the reaction mixture was left to stand for several days, and yellow crystals were finally isolated.

Refinement top

The acid side chain is positionally disordered: occupancy of atoms C6/C6A, C/C5A, O1/O1A and O2/O2A were refined to be 0.852 (7)/0.148 (7). The following restraints were also applied: DFIX 1.32. 02 C7 C6 C7 C6A; DFIX 1.45. 02 C6 C5 C6A C5A; EADP C5 C5A. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 - 0.84 Å, C—H = 0.95 and 0.98Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the centrosymmmetric tetramethylpyrazine molecule and one of the ferulate molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (a) = -x, -y, -z + 1; only the major component of the disordered acrylicacid side chain is shown].
3-(4-Hydroxy-3-methoxyphenyl)acrylic acid–2,3,5,6-tetramethylpyrazine (2/1) top
Crystal data top
0.5C8H12N2·C10H10O4F(000) = 556
Mr = 262.28Dx = 1.312 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 2625 reflections
a = 9.4696 (7) Åθ = 3.6–71.3°
b = 5.7641 (4) ŵ = 0.80 mm1
c = 24.3737 (15) ÅT = 100 K
β = 93.654 (6)°Plate, yellow
V = 1327.70 (16) Å30.20 × 0.05 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Onyx Nova
diffractometer
2398 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σi(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.2417 pixels mm-1θmax = 68.2°, θmin = 3.6°
ω scansh = 611
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 66
Tmin = 0.953, Tmax = 0.961l = 2929
4780 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.4876P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max = 0.003
208 parametersΔρmax = 0.63 e Å3
4 restraintsΔρmin = 0.40 e Å3
Crystal data top
0.5C8H12N2·C10H10O4V = 1327.70 (16) Å3
Mr = 262.28Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.4696 (7) ŵ = 0.80 mm1
b = 5.7641 (4) ÅT = 100 K
c = 24.3737 (15) Å0.20 × 0.05 × 0.05 mm
β = 93.654 (6)°
Data collection top
Oxford Diffraction Xcalibur Onyx Nova
diffractometer
2398 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2004 reflections with I > 2σi(I)
Tmin = 0.953, Tmax = 0.961Rint = 0.030
4780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0544 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
2398 reflectionsΔρmin = 0.40 e Å3
208 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0744 (5)0.5740 (6)0.06036 (17)0.0523 (10)0.852 (7)
O20.0563 (4)0.2666 (5)0.03930 (15)0.0489 (9)0.852 (7)
O30.11323 (15)0.0544 (3)0.33773 (5)0.0432 (4)
O40.04554 (15)0.3292 (2)0.35223 (6)0.0444 (5)
C50.0143 (5)0.3836 (9)0.07299 (14)0.0391 (11)0.852 (7)
C60.0257 (2)0.2939 (4)0.12865 (9)0.0392 (7)0.852 (7)
C70.0333 (2)0.1014 (4)0.14611 (9)0.0506 (7)
C80.0286 (2)0.0041 (4)0.20015 (8)0.0404 (6)
C90.0448 (2)0.0919 (3)0.24314 (8)0.0375 (6)
C100.04259 (19)0.0175 (3)0.29389 (7)0.0334 (5)
C110.03695 (19)0.2208 (3)0.30294 (7)0.0347 (5)
C120.1057 (2)0.3180 (4)0.26015 (8)0.0395 (6)
C130.1010 (2)0.2104 (4)0.20929 (8)0.0416 (6)
C140.2088 (2)0.2438 (4)0.32912 (9)0.0462 (7)
O1A0.051 (2)0.484 (4)0.0621 (8)0.045 (6)0.148 (7)
O2A0.1074 (19)0.249 (3)0.0201 (7)0.054 (5)0.148 (7)
C5A0.028 (3)0.322 (5)0.0629 (11)0.0391 (11)0.148 (7)
C6A0.0587 (13)0.162 (2)0.1065 (5)0.038 (4)0.148 (7)
N10.00905 (17)0.1036 (3)0.44970 (6)0.0393 (5)
C10.0891 (2)0.0814 (4)0.46363 (8)0.0383 (6)
C20.0802 (2)0.1871 (3)0.48531 (8)0.0378 (6)
C30.1847 (2)0.1711 (4)0.42178 (9)0.0479 (7)
C40.1659 (2)0.3952 (4)0.46761 (10)0.0503 (7)
H40.019200.240800.375900.0670*
H60.078900.380500.153300.0470*0.852 (7)
H20.054300.335400.008900.0730*0.852 (7)
H14A0.275400.209800.297700.0690*
H14B0.155600.384800.321600.0690*
H14C0.261200.266900.362100.0690*
H70.085900.019700.120400.0610*0.852 (7)
H90.096100.232300.237400.0450*
H120.156300.459300.265700.0470*
H130.148300.279300.180200.0500*
H6AA0.134700.068100.095700.0450*0.148 (7)
H6AB0.056900.173600.145900.0610*0.148 (7)
H2A0.098500.345700.005800.0810*0.148 (7)
H3A0.203000.047600.395500.0720*
H3B0.139400.302600.402200.0720*
H3C0.274400.221700.440300.0720*
H4A0.124200.468600.436200.0750*
H4B0.263100.347300.457000.0750*
H4C0.166500.506100.498100.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0654 (19)0.053 (2)0.0387 (12)0.0041 (16)0.0046 (11)0.0104 (15)
O20.0630 (18)0.0519 (12)0.0320 (15)0.0025 (11)0.0044 (11)0.0042 (11)
O30.0487 (8)0.0467 (8)0.0339 (7)0.0155 (6)0.0009 (6)0.0038 (6)
O40.0586 (9)0.0409 (8)0.0337 (7)0.0124 (6)0.0032 (6)0.0103 (6)
C50.046 (2)0.045 (2)0.0266 (16)0.0126 (18)0.0039 (12)0.0014 (14)
C60.0447 (13)0.0429 (13)0.0302 (12)0.0046 (10)0.0036 (9)0.0014 (9)
C70.0541 (12)0.0586 (14)0.0381 (12)0.0193 (11)0.0043 (9)0.0034 (10)
C80.0428 (10)0.0473 (11)0.0304 (9)0.0178 (9)0.0024 (8)0.0015 (8)
C90.0425 (10)0.0327 (9)0.0357 (10)0.0048 (8)0.0090 (8)0.0055 (7)
C100.0367 (9)0.0343 (9)0.0286 (9)0.0002 (7)0.0027 (7)0.0003 (7)
C110.0366 (9)0.0357 (10)0.0312 (9)0.0006 (7)0.0018 (7)0.0046 (7)
C120.0372 (10)0.0422 (11)0.0389 (10)0.0010 (8)0.0017 (8)0.0008 (8)
C130.0409 (10)0.0502 (12)0.0339 (10)0.0076 (9)0.0043 (8)0.0041 (8)
C140.0463 (11)0.0405 (11)0.0516 (12)0.0110 (9)0.0011 (9)0.0011 (9)
O1A0.054 (10)0.050 (15)0.034 (7)0.014 (10)0.025 (7)0.024 (10)
O2A0.071 (10)0.057 (7)0.035 (7)0.008 (7)0.011 (6)0.015 (6)
C5A0.046 (2)0.045 (2)0.0266 (16)0.0126 (18)0.0039 (12)0.0014 (14)
C6A0.037 (7)0.042 (8)0.034 (8)0.011 (5)0.003 (5)0.012 (6)
N10.0404 (8)0.0450 (9)0.0322 (8)0.0081 (7)0.0007 (7)0.0108 (7)
C10.0365 (9)0.0450 (11)0.0331 (9)0.0087 (8)0.0010 (7)0.0140 (8)
C20.0356 (9)0.0446 (11)0.0327 (9)0.0072 (8)0.0007 (7)0.0122 (8)
C30.0478 (11)0.0549 (13)0.0420 (11)0.0058 (9)0.0107 (9)0.0151 (9)
C40.0486 (12)0.0520 (13)0.0498 (12)0.0011 (10)0.0002 (10)0.0051 (10)
Geometric parameters (Å, º) top
O1—C51.265 (6)C11—C121.383 (3)
O1A—C5A1.20 (4)C12—C131.384 (3)
O2—C51.283 (6)C6—H60.9500
O2A—C5A1.39 (3)C6A—H6AA0.9500
O3—C141.425 (3)C7—H70.9500
O3—C101.361 (2)C7—H6AB0.9500
O4—C111.352 (2)C9—H90.9500
O2—H20.8400C12—H120.9500
O2A—H2A0.8400C13—H130.9500
O4—H40.8200C14—H14B0.9800
N1—C11.340 (3)C14—H14C0.9800
N1—C21.339 (2)C14—H14A0.9800
C5—C61.462 (4)C1—C31.498 (3)
C5A—C6A1.42 (3)C1—C2i1.393 (3)
C6—C71.302 (3)C2—C41.496 (3)
C6A—C71.068 (12)C3—H3A0.9800
C7—C81.454 (3)C3—H3B0.9800
C8—C131.384 (3)C3—H3C0.9800
C8—C91.407 (3)C4—H4A0.9800
C9—C101.387 (3)C4—H4B0.9800
C10—C111.403 (2)C4—H4C0.9800
C10—O3—C14117.19 (15)C8—C7—H7116.00
C5—O2—H2109.00C8—C7—H6AB96.00
C5A—O2A—H2A109.00C10—C9—H9120.00
C11—O4—H4110.00C8—C9—H9120.00
C1—N1—C2119.49 (16)C13—C12—H12120.00
O2—C5—C6118.7 (4)C11—C12—H12120.00
O1—C5—C6118.3 (4)C8—C13—H13119.00
O1—C5—O2123.0 (4)C12—C13—H13119.00
O1A—C5A—O2A126 (2)H14A—C14—H14C109.00
O2A—C5A—C6A106 (2)H14B—C14—H14C110.00
O1A—C5A—C6A128 (2)H14A—C14—H14B109.00
C5—C6—C7123.3 (3)O3—C14—H14A109.00
C5A—C6A—C7147.1 (16)O3—C14—H14B109.00
C6A—C7—C8167.7 (7)O3—C14—H14C109.00
C6—C7—C8128.0 (2)N1—C1—C3117.31 (18)
C9—C8—C13118.77 (18)N1—C1—C2i120.61 (17)
C7—C8—C13117.51 (18)C2i—C1—C3122.06 (19)
C7—C8—C9123.72 (19)N1—C2—C4117.03 (17)
C8—C9—C10120.34 (17)N1—C2—C1i119.90 (17)
O3—C10—C9125.55 (16)C1i—C2—C4123.07 (18)
O3—C10—C11114.63 (15)C1—C3—H3A110.00
C9—C10—C11119.82 (16)C1—C3—H3B109.00
O4—C11—C12118.58 (16)C1—C3—H3C109.00
C10—C11—C12119.59 (17)H3A—C3—H3B109.00
O4—C11—C10121.81 (15)H3A—C3—H3C109.00
C11—C12—C13120.3 (2)H3B—C3—H3C109.00
C8—C13—C12121.10 (19)C2—C4—H4A109.00
C7—C6—H6118.00C2—C4—H4B109.00
C5—C6—H6118.00C2—C4—H4C109.00
C5A—C6A—H6AA107.00H4A—C4—H4B110.00
C7—C6A—H6AA106.00H4A—C4—H4C109.00
C6—C7—H7116.00H4B—C4—H4C109.00
C6A—C7—H6AB96.00
C14—O3—C10—C96.9 (3)C7—C8—C13—C12177.84 (19)
C14—O3—C10—C11172.83 (16)C8—C9—C10—C112.1 (3)
C1—N1—C2—C4179.50 (18)C8—C9—C10—O3177.59 (18)
C2—N1—C1—C2i0.0 (3)O3—C10—C11—O42.3 (3)
C1—N1—C2—C1i0.0 (3)O3—C10—C11—C12175.86 (17)
C2—N1—C1—C3178.63 (17)C9—C10—C11—O4177.98 (17)
O2—C5—C6—C70.6 (6)C9—C10—C11—C123.8 (3)
O1—C5—C6—C7179.2 (4)C10—C11—C12—C132.7 (3)
C5—C6—C7—C8179.8 (3)O4—C11—C12—C13179.10 (17)
C6—C7—C8—C90.3 (3)C11—C12—C13—C80.3 (3)
C6—C7—C8—C13179.6 (2)N1—C1—C2i—N1i0.0 (3)
C7—C8—C9—C10179.05 (18)N1—C1—C2i—C4i179.47 (18)
C9—C8—C13—C122.1 (3)C3—C1—C2i—N1i178.56 (18)
C13—C8—C9—C100.9 (3)C3—C1—C2i—C4i0.9 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.841.792.613 (5)167
O4—H4···O30.822.282.685 (2)111
O4—H4···N10.821.972.749 (2)158
C3—H3B···O4iii0.982.583.553 (3)174
C14—H14B···O4iii0.982.593.465 (2)148
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula0.5C8H12N2·C10H10O4
Mr262.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.4696 (7), 5.7641 (4), 24.3737 (15)
β (°) 93.654 (6)
V3)1327.70 (16)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Onyx Nova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.953, 0.961
No. of measured, independent and
observed [I > 2σi(I)] reflections
4780, 2398, 2004
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.09
No. of reflections2398
No. of parameters208
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.40

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.792.613 (5)167
O4—H4···N10.821.972.749 (2)158
C3—H3B···O4ii0.982.583.553 (3)174
C14—H14B···O4ii0.982.593.465 (2)148
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Science and Technology Project of the Government of Guangdong Province, China (grant No. 2009B080701025) and thank Professor Xiaopeng Hu of Sun Yat-Sen University for his help.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Z. (2004). China Patent No. ZL00114239.9.  Google Scholar
First citationTan, Z., Jiang, T., Tang, C., Luo, J., Tan, H. & Chen, R. (2003). J. Chin. New Drugs, 12, 529-531.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds