Structure Reports

Online
ISSN 1600-5368

(Z)-3-[(2-Fluoroanilino)carbonyl]prop-2enoic acid

Farooq Ali Shah, ${ }^{\text {a }}$ Saqib Ali, ${ }^{\text {a* }}$ Saira Shahzadi, ${ }^{\text {b }}$ Sajjad Ahmad ${ }^{\text {a }}$ and Andreas Fischer ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ${ }^{\mathbf{b}}$ Department of Chemistry, GC University, Faisalabad, Pakistan, and ${ }^{\text {'Inorganic }}$ Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
Correspondence e-mail: drsa54@yahoo.com

Received 20 December 2010; accepted 8 January 2011

Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.046 ; w R$ factor $=0.121$; data-to-parameter ratio $=8.1$.

In the title molecule, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FNO}_{3}$, the dihedral angle between the fluorophenyl group and the essentially planar [within 0.064 (3) \AA] $\mathrm{COC}=\mathrm{CCOOH}$ unit, which has a Z configuration, is $19.99(14)^{\circ}$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond in the molecule involving the acid -OH group and the adjacent carbonyl O atom. In the crystal, intermolecular N $\mathrm{H} \cdots \mathrm{O}$ bonds lead to the formation of polymer chains propagating along [011].

Related literature

For the use of carboxylic acids containing N atoms as antibiotics, see: Gould et al. (1980). For the biological properties of compounds containing keto, ester, imide and carboxylc acid groups, see: Chen \& Njoroge (2009); Shen \& Walford (1972; 1980). For the structure of 3-[(4-bromoanilino)carbonyl]prop-2-enoic acid, see Parvez, Shahid et al. (2004). For the structure of 3-[(2,4,6-tricholoroanilino)carbonyl]prop-2-enoic acid, see Parvez, Shahzadi et al.(2004).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FNO}_{3}$
Orthorhombic, ${ }_{2}{ }^{\circ} n a 2_{1}$
$M_{r}=209.17$ $a=20.282$ (2) A

$$
\begin{aligned}
& b=3.8025(4) \AA \\
& c=11.8183(8) \AA \\
& V=911.45(15) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.57 \times 0.21 \times 0.06 \mathrm{~mm}$
Data collection
Bruker-Nonius KappaCCD
diffractometer
7575 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.121$
$S=1.09$
1075 reflections
132 parameters
1 restraint

1075 independent reflections
799 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3B $\cdots \mathrm{O} 1$	$0.92(8)$	$1.60(8)$	$2.506(4)$	$170(7)$
N1-H1A \cdots O $^{\mathrm{i}}$	$0.83(5)$	$2.10(5)$	$2.929(5)$	$175(4)$
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z-\frac{1}{2}$				

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support. The Swedish Research Council (VR) is acknowledged for providing funding for the singlecrystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2241).

References

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, K. X. \& Njoroge, F. G. (2009). Curr. Opin. Invest. Drugs, 10, 821-837. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Gould, S. J., Chang, C. C., Darling, D. S., Roberts, J. D. \& Squillacote, M. (1980). J. Am. Chem. Soc. 102, 1707-1712.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Parvez, M., Shahid, K., Shahzadi, S. \& Ali, S. (2004). Acta Cryst. E60, o2079o2081.
Parvez, M., Shahzadi, S., Shahid, K. \& Ali, S. (2004). Acta Cryst. E60, o2082o2084.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, T.-Y. \& Walford, G. L. (1972). US Patent 3655692.
Shen, T.-Y. \& Walford, G. L. (1980). US Patent 3547948.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o393 [doi:10.1107/S1600536811001152]

(Z)-3-[(2-Fluoroanilino) carbonyl]prop-2-enoic acid

Farooq Ali Shah, Saqib Ali, Saira Shahzadi, Sajjad Ahmad and Andreas Fischer

S1. Comment

Carboxylic acids are good reducing agents and applied as an antioxidant agent and a precursor for the prevention of cancer. Carboxylic acids are used for therapeutic purposes and for other biological applications as well. Those carboxylic acids which contain N atoms are widely used as antibiotics (Gould et al., 1980). Compounds containing NH and carboxyl groups are of great interest for the synthesis of drugs due to their coordination to biological systems. Compounds containing keto, ester and imide are good anti-HCV agents (Chen et al., 2009). Carboxylic acids are also used as antiinflammatories (Shen \& Walford, 1980) and enzymetic inhibitors (Shen \& Walford, 1972). We therefore used maleic anhydride to synthesize the title compound, by condensation with 2-fluoroaniline.
The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are close to those observed in simlar compounds; 3-[(4-bromoanilino)carbonyl]prop-2-enoic acid (Parvez, Shahid et al., 2004) and $3-[(2,4,6-T r i c h o l o r o a n i l i n o)$ carbonyl]prop-2-enoic acid (Parvez, Shahzadi et al., 2004). In the molecule there is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the acid OH group and the adjacent carbonyl $\mathrm{O}-\mathrm{atom}$ (Table 1). The $\mathrm{COC}=\mathrm{CCOOH}$ moiety is essentially planar [atoms $\mathrm{O} 1, \mathrm{C} 7-\mathrm{C} 10, \mathrm{O} 2, \mathrm{O} 3$ planar to within 0.064 (3) \AA], and has a Z configuration. It makes a dihedral angle of 19.99 (14) \AA with the phenyl ring.
In the crystal there are intermolecular $\mathrm{N}-\mathrm{H} \cdots . \mathrm{O}$ hydrogen bonds connecting symmetry related molecules yielding chains propagating along [011] (Table 1 and Fig. 2).

S2. Experimental

A solution of maleic anhydride ($5 \mathrm{~g}, 1 \mathrm{mmol}$) in (300 ml glacial acetic acid) was added to a solution of 2-fluoroaniline (5 $\mathrm{ml}, 1 \mathrm{mmol})(150 \mathrm{ml}$ glacial acetic acid) in 500 ml beaker at room temperature and the mixture was stirred in fuming hood at room temperature overnight. The light yellow precipitates formed were filtered off, washed with cold distilled $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and air dried. The yellow crystals, suitable for X-ray diffraction analysis, were obtained by recrystallization in acetone:n-hexane (1:1).

S3. Refinement

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 719 Friedel pairs were merged and $\Delta \mathrm{f}$ " set to zero. The OH and NH H -atoms were located from a difference Fourier map and were freely refined: O3$\mathrm{H} 3 \mathrm{~B}=0.92(8) \AA, \mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}=0.83(5) \AA$. The C -bound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.93 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}($ parent C -atom $)$.

Figure 1

The molecular structure of the title compound. Thermal ellipsoids are drawn at the 50% probability level. The intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown as a dashed line.

Figure 2

A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).

(Z)-3-[(2-Fluoroanilino)carbonyl] prop-2-enoic acid

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FNO}_{3}$
$M_{r}=209.17$
Orthorhombic, Pna_{1}
Hall symbol: P 2c -2n
$a=20.282$ (2) Å
$b=3.8025$ (4) \AA
$c=11.8183$ (8) \AA
$V=911.45(15) \AA^{3}$
$Z=4$
$F(000)=432$
$D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 49 reflections
$\theta=6.2-19.7^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Plate, yellow
$0.57 \times 0.21 \times 0.06 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
7575 measured reflections
1075 independent reflections

$$
\begin{aligned}
& 799 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.066 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=5.3^{\circ} \\
& h=-24 \rightarrow 26 \\
& k=-4 \rightarrow 4 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.121$
$S=1.09$
1075 reflections
132 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0562 P)^{2}+0.3218 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.06487(13)$	$0.1290(8)$	$0.1972(2)$	$0.0682(9)$
O1	$0.13208(13)$	$0.4940(9)$	$0.5666(2)$	$0.0568(9)$
O2	$0.31277(15)$	$1.0159(9)$	$0.6674(3)$	$0.0608(10)$
O3	$0.21896(15)$	$0.7409(10)$	$0.6947(3)$	$0.0609(12)$
N1	$0.11309(15)$	$0.4479(9)$	$0.3789(3)$	$0.0380(10)$
C1	$0.04662(8)$	$0.3316(7)$	$0.38017(19)$	$0.0339(10)$
C2	$0.02363(10)$	$0.1799(7)$	$0.28070(18)$	$0.0440(12)$
C3	$-0.04193(11)$	$0.0770(7)$	$0.2720(2)$	$0.0510(16)$
C4	$-0.08451(9)$	$0.1257(8)$	$0.3629(2)$	$0.0500(15)$
C5	$-0.06152(10)$	$0.2773(8)$	$0.4623(2)$	$0.0491(15)$
C6	$0.00405(11)$	$0.3803(7)$	$0.47100(17)$	$0.0436(11)$
C7	$0.15083(18)$	$0.5352(10)$	$0.4677(3)$	$0.0376(11)$
C8	$0.21585(19)$	$0.6799(11)$	$0.4379(3)$	$0.0418(11)$
C9	$0.26209(19)$	$0.8086(11)$	$0.5039(3)$	$0.0426(11)$
C10	$0.2656(2)$	$0.8609(12)$	$0.6285(3)$	$0.0433(14)$
H1A	$0.132(2)$	$0.467(11)$	$0.317(4)$	$0.040(12)^{*}$
H3	-0.05730	-0.02450	0.20550	0.0610^{*}

H3B	$0.190(4)$	$0.630(18)$	$0.647(7)$	$0.11(2)^{*}$
H4	-0.12840	0.05680	0.35710	0.0600^{*}
H5	-0.09000	0.30990	0.52310	0.0590^{*}
H6	0.01940	0.48170	0.53760	0.0520^{*}
H8	0.22570	0.68040	0.36100	0.0500^{*}
H9	0.29970	0.88070	0.46550	0.0510^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0578(14)$	$0.107(2)$	$0.0399(13)$	$-0.0096(15)$	$0.0025(12)$	$-0.0258(14)$
O1	$0.0460(14)$	$0.096(2)$	$0.0283(14)$	$-0.0165(15)$	$-0.0017(13)$	$0.0017(16)$
O2	$0.0468(16)$	$0.093(2)$	$0.0425(17)$	$-0.0111(16)$	$-0.0097(14)$	$-0.0176(17)$
O3	$0.0479(16)$	$0.101(3)$	$0.0337(15)$	$-0.0106(18)$	$-0.0026(14)$	$-0.0121(19)$
N1	$0.0357(15)$	$0.050(2)$	$0.0284(16)$	$0.0003(14)$	$-0.0007(15)$	$-0.0046(16)$
C1	$0.0368(17)$	$0.0353(18)$	$0.0297(19)$	$0.0044(15)$	$-0.0042(16)$	$0.0032(16)$
C2	$0.044(2)$	$0.046(2)$	$0.042(2)$	$0.0008(18)$	$-0.003(2)$	$0.001(2)$
C3	$0.052(2)$	$0.049(3)$	$0.052(3)$	$-0.0084(19)$	$-0.017(2)$	$0.003(2)$
C4	$0.0400(19)$	$0.054(3)$	$0.056(3)$	$-0.0057(18)$	$-0.007(2)$	$0.017(2)$
C5	$0.0363(18)$	$0.062(3)$	$0.049(3)$	$0.0049(18)$	$0.0005(19)$	$0.015(2)$
C6	$0.0417(19)$	$0.049(2)$	$0.040(2)$	$0.0044(18)$	$-0.0049(18)$	$0.001(2)$
C7	$0.0366(19)$	$0.046(2)$	$0.0302(19)$	$0.0001(16)$	$0.0000(17)$	$-0.0015(19)$
C8	$0.043(2)$	$0.058(2)$	$0.0244(17)$	$-0.0028(19)$	$0.0019(16)$	$-0.0086(17)$
C9	$0.0339(18)$	$0.059(2)$	$0.035(2)$	$-0.0034(18)$	$0.0026(16)$	$-0.0062(19)$
C10	$0.037(2)$	$0.059(3)$	$0.034(2)$	$0.0081(19)$	$-0.0041(18)$	$-0.008(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{F} 1-\mathrm{C} 2$	$1.308(3)$	$\mathrm{C} 4-\mathrm{C} 5$	1.3892
$\mathrm{O} 1-\mathrm{C} 7$	$1.239(4)$	$\mathrm{C} 5-\mathrm{C} 6$	1.3902
$\mathrm{O} 2-\mathrm{C} 10$	$1.214(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.472(5)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.310(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.314(5)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$0.92(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.488(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.419(4)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.341(5)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.83(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	1.3900	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.3900	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	1.3899	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	1.3908		
		$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$129.5(3)$
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$105(5)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$132.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$127.7(3)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	$120.8(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$118(3)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$118.5(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$114(3)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	$120.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.1(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3-\mathrm{H} 3$	120.00
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 6$	$123.8(2)$	120.00	

C1-C2-C3	120.02	C3-C4-H4	120.00
F1-C2-C1	119.0 (2)	C5-C4-H4	120.00
F1-C2-C3	121.0 (2)	C4-C5-H5	120.00
C2-C3-C4	119.96	C6-C5-H5	120.00
C3-C4-C5	120.00	C1-C6-H6	120.00
C4-C5-C6	120.04	C5-C6-H6	120.00
C1-C6-C5	119.97	C7-C8-H8	115.00
O1-C7-N1	122.1 (3)	C9-C8-H8	115.00
O1-C7-C8	123.2 (3)	C8-C9-H9	114.00
N1-C7-C8	114.6 (3)	C10-C9-H9	114.00
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-165.3 (3)	F1-C2-C3-C4	178.4 (3)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	18.5 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.04
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	6.3 (6)	C2-C3-C4-C5	0.04
C1-N1-C7-C8	-174.2 (3)	C3-C4-C5-C6	-0.02
N1-C1-C2-F1	5.3 (4)	C4-C5-C6-C1	0.00
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-176.3 (3)	O1-C7-C8-C9	-5.0 (7)
C6-C1-C2-F1	-178.4 (3)	N1-C7-C8-C9	175.4 (4)
C6-C1-C2-C3	0.03	C7-C8-C9-C10	-1.3 (8)
N1-C1-C6-C5	176.0 (3)	C8-C9-C10-O2	-173.7 (5)
C2-C1-C6-C5	-0.02	C8-C9-C10-O3	6.6 (7)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 1$	$0.92(8)$	$1.60(8)$	$2.506(4)$	$170(7)$
$\mathrm{N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.83(5)$	$2.10(5)$	$2.929(5)$	$175(4)$

Symmetry code: (i) $-x+1 / 2, y-1 / 2, z-1 / 2$.

