supplementary materials


su2245 scheme

Acta Cryst. (2011). E67, o328-o329    [ doi:10.1107/S1600536811000687 ]

3,5-Bis(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole

Z. Baktir, M. Akkurt, S. Samshuddin, B. Narayana and H. S. Yathirajan

Abstract top

In the title compound, C23H22N2O2, the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two methoxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C-H...[pi] stacking interactions and weak [pi]-[pi] interactions [centriod-centroid distance = 3.891 (2) Å].

Comment top

Pyrazoline derivatives are well known for their versatile pharmacological activities such as antitumor, antibacterial, antifungal, antiviral, antiparasitic, anti-tubercular and insecticidal agents (Hes et al., 1978; Manna et al.. 2005; Amir et al., 2008). Some of these compounds have also anti-inflammatory, anti-diabetic, anaesthetic, analgesic and DPPH scavenging properties (Sarojini et al., 2010; Regaila et al.., 1979). Because of their diverse properties, fairly assessable path of synthesis, wide range of therapeutic activities and variety of industrial application, the pyrazoline ring became a center of attraction for organic chemists. Several 1,3,5-triaryl-2-pyrazolines were also used as scintillation solutes (Wiley et al., 1958). In addition, pyrazolines have played a crucial part in the development of theory in heterocyclic chemistry and also used extensively in organic synthesis (Klimova et al.., 1999 & Bhaskarreddy et al., 1997). Many pyrazolines have excellent fluorescent property (Zhi-Yun et al., 1999).

In continuation of our work on pyrazoline derivatives (Samshuddin et al., 2010, Fun et al., 2010, Jasinski et al., 2010a,b) and in view of the importance of these derivatives, the title compound was synthesized and its crystal structure is reported on herein.

The title compound (Fig. 1), contains two methoxyphenyl groups (C1–C6 and C17–C22) and a phenyl ring (C11–C16) attached to the central pyrazole ring (N1/N2/C8–C10) which is nearly planar [r.m.s. deviation = 0.046 Å]. The dihedral angle between the two methoxy-substituted phenyl groups (C1–C6 and C17–C22) is 73.3 (2)°, and the dihedral angle between the pyrazole (N1/N2/C8–C10) and phenyl (C11–C16) rings is 18.5 (2)°. Also, the dihedral angles between the phenyl ring (C11–C16) and the two methoxy-substituted phenyl rings (C1–C6 and C17–C22) are 26.2 (2) and 80.6 (2)°, respectively.

The crystal structure is stabilized by C—H···π stacking interactions (Table 1) and weak π-π interactions [Cg1···Cg4(x, y, z) = 3.891 (2) Å, Cg1 and Cg4 are the centroids of the (N1/N2/C8–C10) pyrazole ring and the (C17–C22) benzene ring, respectively].

Fig. 2 shows the crystal packing diagram of of the title compound, viewed down the a axis. .

Related literature top

For the biological activity of pyrazoline derivatives, see: Amir et al. (2008); Hes et al. (1978); Manna et al. (2005); Regaila et al. (1979); Sarojini et al. (2010). For the use of pyrazoline derivatives in organic synthesis, see: Klimova et al. (1999); Bhaskarreddy et al. (1997). For physical properties of pyrazoline derivatives, see: Wiley et al. (1958); Zhi-Yun et al. (1999). For related structures, see: Fun et al. (2010); Jasinski et al. (2010a,b); Samshuddin et al. (2010).

Experimental top

A mixture of (2E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one (2.68 g, 0.01 mol) and phenyl hydrazine (1.08 g, 0.01 mol) in 50 ml glacial acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml of ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Yellow block-like crystals of the title compound were grown from toluene by slow evaporation (m. p.: 414 K, Yield: 76%).

Refinement top

The crystal diffracted weakly beyond 22° in θ, and only 35% of the data can be considerd to be observed [I>2σ(I)], hence the rather high Rint value. H-atoms were placed in geometrically idealized positions, with C—H distances in the range 0.93–0.98 Å, and refined as riding with Uiso(H) = k× Ueq(C), where k = 1.2 for methine, methylene and aromatic H-atoms and k = 1.5 for methyl H-atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound, viewed down the a axis (Hydrogen atoms have been omitted for clarity).
3,5-Bis(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C23H22N2O2F(000) = 760
Mr = 358.43Dx = 1.239 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 2377 reflections
a = 9.4788 (5) Åθ = 2.1–26.4°
b = 10.1893 (6) ŵ = 0.08 mm1
c = 19.9139 (10) ÅT = 294 K
β = 92.296 (4)°Block, yellow
V = 1921.79 (18) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3191 independent reflections
Radiation source: Sealed Tube1106 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.224
Detector resolution: 10.0000 pixels mm-1θmax = 24.5°, θmin = 2.1°
dtprofit.ref scansh = 1011
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1111
Tmin = 0.984, Tmax = 0.984l = 2323
33689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
3191 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H22N2O2V = 1921.79 (18) Å3
Mr = 358.43Z = 4
Monoclinic, P21/aMo Kα radiation
a = 9.4788 (5) ŵ = 0.08 mm1
b = 10.1893 (6) ÅT = 294 K
c = 19.9139 (10) Å0.20 × 0.20 × 0.20 mm
β = 92.296 (4)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1106 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.984Rint = 0.224
33689 measured reflectionsθmax = 24.5°
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.184Δρmax = 0.14 e Å3
S = 0.90Δρmin = 0.20 e Å3
3191 reflectionsAbsolute structure: ?
247 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0819 (4)0.1272 (3)0.39060 (17)0.1161 (16)
O20.0782 (3)0.1990 (3)0.98107 (15)0.0975 (12)
N10.4111 (4)0.0467 (3)0.67195 (17)0.0765 (16)
N20.4312 (4)0.0442 (3)0.74168 (17)0.0830 (16)
C10.2937 (5)0.0382 (4)0.5358 (2)0.0921 (19)
C20.2422 (5)0.0461 (4)0.4715 (2)0.099 (2)
C30.1238 (5)0.1237 (5)0.4573 (2)0.091 (2)
C40.0598 (5)0.1887 (5)0.5072 (3)0.097 (2)
C50.1130 (5)0.1780 (4)0.5723 (2)0.091 (2)
C60.2324 (5)0.1044 (4)0.5883 (2)0.0772 (17)
C70.0360 (6)0.2097 (5)0.3715 (2)0.129 (3)
C80.2877 (5)0.0945 (4)0.6573 (2)0.0762 (17)
C90.2094 (5)0.1353 (5)0.7176 (2)0.097 (2)
C100.3152 (5)0.1076 (5)0.7766 (2)0.0836 (17)
C110.5689 (5)0.0366 (4)0.7691 (2)0.0757 (17)
C120.5991 (5)0.0710 (4)0.8356 (2)0.088 (2)
C130.7370 (6)0.0628 (5)0.8621 (3)0.099 (2)
C140.8423 (6)0.0196 (5)0.8245 (3)0.105 (3)
C150.8142 (5)0.0157 (5)0.7582 (3)0.108 (2)
C160.6772 (5)0.0088 (4)0.7303 (2)0.0897 (19)
C170.2569 (4)0.0218 (5)0.8307 (2)0.0770 (17)
C180.2257 (4)0.0745 (4)0.8926 (2)0.0807 (17)
C190.1665 (4)0.0022 (5)0.9410 (2)0.0811 (17)
C200.1368 (4)0.1318 (5)0.9293 (2)0.0757 (17)
C210.1693 (4)0.1872 (4)0.8692 (2)0.0832 (17)
C220.2303 (4)0.1093 (5)0.8205 (2)0.0850 (19)
C230.0220 (5)0.3240 (5)0.9679 (2)0.112 (2)
H10.373000.013400.545100.1110*
H20.285300.000500.437400.1190*
H40.019500.240100.497500.1160*
H50.067600.221400.606400.1100*
H7A0.013700.299200.382600.1920*
H7B0.055700.202300.324000.1920*
H7C0.117300.182600.395200.1920*
H9A0.184900.227700.715500.1170*
H9B0.123900.084100.721600.1170*
H100.348200.190800.796400.1000*
H120.527100.099700.862400.1060*
H130.756600.087500.906500.1180*
H140.933700.013600.843000.1260*
H150.887300.044400.732100.1300*
H160.658400.034300.686000.1080*
H180.244800.162400.901500.0970*
H190.146500.034600.982300.0970*
H210.151100.275600.861000.1000*
H220.253600.147400.779900.1020*
H23A0.097400.384400.960200.1680*
H23B0.029400.352901.005700.1680*
H23C0.040300.320200.928700.1680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.143 (3)0.124 (3)0.080 (2)0.027 (2)0.012 (2)0.005 (2)
O20.117 (2)0.099 (2)0.078 (2)0.016 (2)0.0221 (19)0.0041 (19)
N10.081 (3)0.083 (3)0.066 (2)0.002 (2)0.0104 (19)0.0017 (19)
N20.088 (3)0.104 (3)0.058 (2)0.005 (2)0.016 (2)0.002 (2)
C10.102 (3)0.102 (4)0.073 (3)0.012 (3)0.014 (3)0.007 (3)
C20.123 (4)0.106 (4)0.068 (3)0.021 (3)0.007 (3)0.004 (3)
C30.107 (4)0.094 (4)0.071 (3)0.000 (3)0.002 (3)0.010 (3)
C40.106 (4)0.098 (4)0.087 (4)0.016 (3)0.011 (3)0.010 (3)
C50.109 (4)0.091 (4)0.075 (3)0.013 (3)0.016 (3)0.005 (3)
C60.085 (3)0.079 (3)0.068 (3)0.002 (3)0.010 (3)0.010 (2)
C70.162 (5)0.112 (4)0.108 (4)0.024 (4)0.038 (4)0.001 (3)
C80.085 (3)0.075 (3)0.070 (3)0.002 (3)0.020 (3)0.004 (2)
C90.110 (4)0.106 (4)0.077 (3)0.021 (3)0.024 (3)0.008 (3)
C100.094 (3)0.086 (3)0.072 (3)0.001 (3)0.019 (3)0.005 (2)
C110.082 (3)0.077 (3)0.069 (3)0.003 (2)0.016 (3)0.001 (2)
C120.097 (4)0.096 (4)0.073 (3)0.007 (3)0.015 (3)0.001 (3)
C130.106 (4)0.099 (4)0.091 (4)0.014 (3)0.007 (3)0.001 (3)
C140.090 (4)0.112 (4)0.111 (5)0.002 (3)0.005 (3)0.005 (3)
C150.089 (4)0.126 (4)0.109 (4)0.002 (3)0.008 (3)0.014 (4)
C160.085 (3)0.101 (4)0.083 (3)0.005 (3)0.002 (3)0.012 (3)
C170.084 (3)0.080 (3)0.068 (3)0.001 (3)0.014 (2)0.005 (2)
C180.096 (3)0.076 (3)0.071 (3)0.006 (2)0.014 (3)0.007 (2)
C190.096 (3)0.087 (3)0.061 (3)0.004 (3)0.013 (2)0.011 (2)
C200.084 (3)0.084 (3)0.060 (3)0.004 (3)0.013 (2)0.001 (3)
C210.091 (3)0.079 (3)0.080 (3)0.007 (3)0.007 (3)0.004 (3)
C220.095 (3)0.091 (4)0.070 (3)0.002 (3)0.017 (3)0.011 (3)
C230.123 (4)0.108 (4)0.105 (4)0.036 (3)0.006 (3)0.009 (3)
Geometric parameters (Å, °) top
O1—C31.372 (5)C18—C191.378 (6)
O1—C71.437 (6)C19—C201.368 (7)
O2—C201.373 (5)C20—C211.370 (6)
O2—C231.401 (6)C21—C221.396 (6)
N1—N21.394 (5)C1—H10.9300
N1—C81.290 (6)C2—H20.9300
N2—C101.474 (6)C4—H40.9300
N2—C111.397 (6)C5—H50.9300
C1—C21.354 (6)C7—H7A0.9600
C1—C61.391 (6)C7—H7B0.9600
C2—C31.393 (7)C7—H7C0.9600
C3—C41.357 (7)C9—H9A0.9700
C4—C51.376 (7)C9—H9B0.9700
C5—C61.384 (6)C10—H100.9800
C6—C81.454 (6)C12—H120.9300
C8—C91.496 (6)C13—H130.9300
C9—C101.540 (6)C14—H140.9300
C10—C171.509 (6)C15—H150.9300
C11—C121.389 (6)C16—H160.9300
C11—C161.389 (6)C18—H180.9300
C12—C131.392 (7)C19—H190.9300
C13—C141.346 (8)C21—H210.9300
C14—C151.384 (8)C22—H220.9300
C15—C161.394 (7)C23—H23A0.9600
C17—C181.387 (6)C23—H23B0.9600
C17—C221.373 (7)C23—H23C0.9600
O1···C15i3.358 (7)H7A···H42.3700
O1···H15i2.6100H7A···N1vi2.9300
O2···H13ii2.9100H7A···H16vi2.5400
O2···H19iii2.8300H7B···H15i2.5500
N1···H12.6100H7C···C42.7400
N1···H162.4900H7C···H42.2800
N1···H7Aiv2.9300H9A···C52.9500
N2···H222.7100H9A···H52.4000
C12···C173.280 (6)H9A···C11ix2.8700
C15···O1i3.358 (7)H9A···C16ix2.8800
C17···C123.280 (6)H9B···C222.9400
C1···H4v2.9900H10···C122.7600
C4···H7A2.7900H10···H122.3000
C4···H7C2.7400H10···H182.3600
C5···H9A2.9500H10···C13ix3.0400
C7···H15i3.0500H10···C14ix3.0000
C7···H42.5300H12···C102.5900
C7···H16vi3.0600H12···C172.7300
C9···H52.6900H12···C182.9500
C10···H122.5900H12···H102.3000
C11···H9Av2.8700H13···O2ii2.9100
C12···H21vii3.0900H13···H18v2.5500
C12···H102.7600H14···C17x3.0800
C13···H18v2.9100H14···C18x2.9700
C13···H23Avii3.0100H14···C19x2.8900
C13···H10v3.0400H14···C20x2.9300
C13···H21vii3.0400H14···C21x3.0600
C14···H10v3.0000H15···O1i2.6100
C16···H9Av2.8800H15···C7i3.0500
C17···H122.7300H15···H7Bi2.5500
C17···H14viii3.0800H16···N12.4900
C18···H122.9500H16···C7iv3.0600
C18···H14viii2.9700H16···H7Aiv2.5400
C19···H14viii2.8900H16···H2i2.5600
C20···H14viii2.9300H18···H102.3600
C21···H14viii3.0600H18···C13ix2.9100
C21···H23A2.8100H18···H13ix2.5500
C21···H23C2.7200H19···O2iii2.8300
C21···H23Cvii2.9500H21···C232.5500
C22···H9B2.9400H21···H23A2.3400
C22···H23Cvii3.0800H21···H23C2.3500
C23···H212.5500H21···C12xi3.0900
H1···N12.6100H21···C13xi3.0400
H2···H16i2.5600H22···N22.7100
H4···C72.5300H23A···C212.8100
H4···H7A2.3700H23A···H212.3400
H4···H7C2.2800H23A···C13xi3.0100
H4···C1ix2.9900H23C···C212.7200
H5···C92.6900H23C···H212.3500
H5···H9A2.4000H23C···C21xi2.9500
H7A···C42.7900H23C···C22xi3.0800
C3—O1—C7117.6 (4)C3—C2—H2121.00
C20—O2—C23118.4 (3)C3—C4—H4120.00
N2—N1—C8108.6 (3)C5—C4—H4120.00
N1—N2—C10112.8 (3)C4—C5—H5119.00
N1—N2—C11118.6 (3)C6—C5—H5119.00
C10—N2—C11122.9 (3)O1—C7—H7A109.00
C2—C1—C6122.4 (4)O1—C7—H7B109.00
C1—C2—C3118.9 (4)O1—C7—H7C109.00
O1—C3—C2114.3 (4)H7A—C7—H7B110.00
O1—C3—C4125.2 (4)H7A—C7—H7C109.00
C2—C3—C4120.6 (4)H7B—C7—H7C109.00
C3—C4—C5119.6 (4)C8—C9—H9A111.00
C4—C5—C6121.7 (4)C8—C9—H9B111.00
C1—C6—C5116.9 (4)C10—C9—H9A111.00
C1—C6—C8122.1 (4)C10—C9—H9B111.00
C5—C6—C8121.0 (4)H9A—C9—H9B109.00
N1—C8—C6122.0 (4)N2—C10—H10110.00
N1—C8—C9113.5 (4)C9—C10—H10110.00
C6—C8—C9124.6 (4)C17—C10—H10109.00
C8—C9—C10103.5 (4)C11—C12—H12120.00
N2—C10—C9101.3 (3)C13—C12—H12120.00
N2—C10—C17112.6 (4)C12—C13—H13119.00
C9—C10—C17113.9 (4)C14—C13—H13120.00
N2—C11—C12120.8 (4)C13—C14—H14120.00
N2—C11—C16120.1 (4)C15—C14—H14120.00
C12—C11—C16119.1 (4)C14—C15—H15120.00
C11—C12—C13120.1 (4)C16—C15—H15120.00
C12—C13—C14121.0 (5)C11—C16—H16120.00
C13—C14—C15119.8 (5)C15—C16—H16120.00
C14—C15—C16120.5 (5)C17—C18—H18120.00
C11—C16—C15119.5 (4)C19—C18—H18120.00
C10—C17—C18120.5 (4)C18—C19—H19120.00
C10—C17—C22121.9 (4)C20—C19—H19119.00
C18—C17—C22117.6 (4)C20—C21—H21120.00
C17—C18—C19120.6 (4)C22—C21—H21120.00
C18—C19—C20121.0 (4)C17—C22—H22119.00
O2—C20—C19116.1 (4)C21—C22—H22119.00
O2—C20—C21124.2 (4)O2—C23—H23A109.00
C19—C20—C21119.7 (4)O2—C23—H23B109.00
C20—C21—C22119.1 (4)O2—C23—H23C109.00
C17—C22—C21121.9 (4)H23A—C23—H23B109.00
C2—C1—H1119.00H23A—C23—H23C109.00
C6—C1—H1119.00H23B—C23—H23C110.00
C1—C2—H2121.00
C7—O1—C3—C2177.4 (4)C1—C6—C8—N114.4 (7)
C7—O1—C3—C42.3 (7)C1—C6—C8—C9164.6 (4)
C23—O2—C20—C19168.4 (4)N1—C8—C9—C102.3 (5)
C23—O2—C20—C2113.3 (6)C6—C8—C9—C10178.7 (4)
N2—N1—C8—C92.0 (5)C8—C9—C10—C17126.2 (4)
C8—N1—N2—C11160.0 (3)C8—C9—C10—N25.1 (4)
N2—N1—C8—C6177.1 (4)C9—C10—C17—C2270.6 (5)
C8—N1—N2—C105.8 (4)N2—C10—C17—C18137.2 (4)
C10—N2—C11—C1210.0 (6)N2—C10—C17—C2244.1 (5)
N1—N2—C10—C96.8 (5)C9—C10—C17—C18108.2 (5)
C11—N2—C10—C9159.6 (4)N2—C11—C16—C15179.9 (4)
N1—N2—C10—C17128.8 (3)C12—C11—C16—C151.7 (6)
C11—N2—C10—C1778.3 (5)N2—C11—C12—C13180.0 (4)
C10—N2—C11—C16171.6 (4)C16—C11—C12—C131.6 (6)
N1—N2—C11—C12161.4 (4)C11—C12—C13—C141.2 (7)
N1—N2—C11—C1620.2 (5)C12—C13—C14—C150.9 (8)
C2—C1—C6—C8179.5 (4)C13—C14—C15—C161.0 (8)
C2—C1—C6—C51.2 (7)C14—C15—C16—C111.4 (7)
C6—C1—C2—C30.2 (7)C10—C17—C22—C21176.5 (4)
C1—C2—C3—O1178.7 (4)C18—C17—C22—C212.3 (6)
C1—C2—C3—C41.0 (7)C10—C17—C18—C19177.0 (4)
C2—C3—C4—C50.3 (7)C22—C17—C18—C191.8 (6)
O1—C3—C4—C5179.5 (4)C17—C18—C19—C200.1 (6)
C3—C4—C5—C61.3 (7)C18—C19—C20—C211.5 (6)
C4—C5—C6—C12.0 (7)C18—C19—C20—O2179.9 (3)
C4—C5—C6—C8179.7 (4)O2—C20—C21—C22179.2 (4)
C5—C6—C8—N1167.5 (4)C19—C20—C21—C221.0 (6)
C5—C6—C8—C913.6 (7)C20—C21—C22—C170.9 (6)
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y, −z+2; (iv) −x+1/2, y+1/2, −z+1; (v) x+1/2, −y−1/2, z; (vi) −x+1/2, y−1/2, −z+1; (vii) x+1/2, −y+1/2, z; (viii) x−1, y, z; (ix) x−1/2, −y−1/2, z; (x) x+1, y, z; (xi) x−1/2, −y+1/2, z.
Hydrogen-bond geometry (Å, °) top
Cg1, Cg3 and Cg4 are the centroids of the pyrazole (N1/N2/C8–C10), phenyl (C11–C16) and benzene (C17–C22) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg3ix0.972.973.779 (5)141
C14—H14···Cg4x0.932.683.588 (6)167
C21—H21···Cg3xi0.932.933.779 (4)153
C23—H23C···Cg4xi0.962.923.682 (5)138
Symmetry codes: (ix) x−1/2, −y−1/2, z; (x) x+1, y, z; (xi) x−1/2, −y+1/2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1, Cg3 and Cg4 are the centroids of the pyrazole (N1/N2/C8–C10), phenyl (C11–C16) and benzene (C17–C22) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg3i0.972.973.779 (5)141
C14—H14···Cg4ii0.932.683.588 (6)167
C21—H21···Cg3iii0.932.933.779 (4)153
C23—H23C···Cg4iii0.962.923.682 (5)138
Symmetry codes: (i) x−1/2, −y−1/2, z; (ii) x+1, y, z; (iii) x−1/2, −y+1/2, z.
Acknowledgements top

ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey, for the research grant FBD-10–2949 and for support of the data collection at Atatürk University, Turkey. SS and BN thank Mangalore University for research facilities and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.

Bhaskarreddy, D., Chandrasekhar, B. N., Padmavathi, V. & Sumathi, R. P. (1997). Synthesis, 3, 491–494.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.

Hes, R. V., Wellinga, K. & Grosscurt, A. C. (1978). J. Agric. Food Chem. 26, 915–918.

Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.

Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1950–o1951.

Klimova, E. I., Marcos, M., Klimova, T. B., Cecilio, A. T., Ruben, A. T. & Lena, R. R. (1999). J. Organomet. Chem. 585, 106–111.

Manna, F., Chimenti, F., Fioravanti, R., Bolasco, A., Secci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635.

Regaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). Egypt. J. Chem. 20, 197–202.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.

Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738.

Zhi-Yun, L. U., Wei-Guo, Z. H. U., Qing, J. & Ming-Gui, X. I. E. (1999). Chin. Chem. Lett. 10, 679–682.