organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o388-o389

2-(4-Meth­­oxy­phen­yl)-4H-1,3,2-benzoxa­thia­phosphinine 2-sulfide

aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 3 December 2010; accepted 17 December 2010; online 15 January 2011)

The asymmetric unit of the title compound, C14H13O2PS2, contains two crystallographically independent mol­ecules, which differ in the conformation of the 1,3,2-benzoxathia­phosphinine moieties (screw boat in the first mol­ecule and envelope in the second mol­ecule). In the crystal, neither classical nor non-classical hydrogen bonds are found. Weak inter­actions (about 2.9–3.0 Å) between the lone pair of the terminal S atoms with H atoms occur. This compound was further characterized by 1H NMR and IR spectroscopy.

Related literature

Lawesson's reagent is widely used for transformation of a carbonyl functional group into a thio­carbonyl, see: Ozturk et al. (2007[Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210-5278.]). Lawesson's reagent reacts with 1,2-naphtho­quinone-1-methide precursors to give 1H-naphtho­[1,2-e][1,3,2]oxathia­phosphinine 2-sulfide derivatives, which are of inter­est as herbicides, see: El-Kateb & El-Rahman (2006[El-Kateb, A. A. & El-Rahman, N. M. A. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 249-254.]); El-Kateb et al. (1991[El-Kateb, A. A., Hennawy, I. T., Shabana, R. & Abdel-Malek, H. A. (1991). Phosphorus Sulfur Silicon Relat. Elem. 63, 13-17.]); Maigali et al. (2009[Maigali, S. S., Shabana, R., El-Hussieny, M. & Soliman, F. M. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 2408-2426.]). For conformational calculations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Zefirov et al. (1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]); Zotov et al. (1997[Zotov, A. Yu., Palyulin, V. A. & Zefirov, N. S. (1997). J. Chem. Inf. Comput. Sci. 37, 766-773.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13O2PS2

  • Mr = 308.35

  • Triclinic, [P \overline 1]

  • a = 10.0548 (5) Å

  • b = 10.0804 (5) Å

  • c = 14.8913 (7) Å

  • α = 94.322 (4)°

  • β = 91.121 (4)°

  • γ = 111.675 (4)°

  • V = 1396.79 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.50 mm−1

  • T = 150 K

  • 0.20 × 0.14 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.499, Tmax = 0.816

  • 27233 measured reflections

  • 4926 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.05

  • 4926 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Lawesson's reagent is widely used for transformation of a carbonyl functional group into a thiocarbonyl (Ozturk et al., 2007). At the same time, the reaction of Lawesson's reagent with compounds having two nucleophilic or one nucleophilic and one electrophilic centers may lead to heterocyclic rings incorporating part of Lawesson's reagent.

It was shown that Lawesson's reagent reacts with 1,2-naphthoquinone-1-methide precursors to give 1H-naphtho[1,2-e][1,3,2]oxathiaphosphinine 2-sulfide derivatives which are interesting as herbicides (El-Kateb & El-Rahman, 2006; El-Kateb et al., 1991; Maigali et al., 2009). However, preparation of 4H-1,3,2-benzoxathiaphosphinine 2-sulfides from salicylic alcohols was not described in literature. The 2-(4-methoxyphenyl)-4H-1,3,2-benzoxathiaphosphinine 2-sulfide was prepared from Lawesson's reagent and o-hydroxybenzyl alcohol in o-xylene at reflux in 35% yield. A mechanism accounting for the formation of structure I is depicted in Fig. 1. The hydroxybenzyl alcohol loses a molecule of water to give the o-quinone methide II. A nucleophilic attack on the methylene group of II by the sulfur anion of the monomeric form of Lawesson's reagent produces the zwitterionic intermediate which is cyclized to give the end product I.

The asymmetric unit of a crystal of I contains two crystallographically independent molecules, which are different by the conformation of the 1,3,2-benzoxathiaphosphinine moieties: in molecule a - screw boat, and in molecule b - distorted envelope. The Zotov-Palyulin puckering parameters for molecule a are: S = 0.886, θ = 80.83°, ψ2 = 347.94°, σ = 4.21 (Zefirov et al., 1990; Zotov et al., 1997). Cremer-Pople parameters for comparison: Q = 0.750 Å, θ = 76.92°, ϕ2 = 341.43° (Cremer & Pople, 1975). For molecule b: S = 0.751, θ = 35.92°, ψ2 = 356.11°, σ = 3.86 (Zotov-Palyulin), and Q = 0.666 Å, θ = 52.87°, ϕ2 = 2.08° (Cremer-Pople).

In the crystal structure neither classical nor non-classical hydrogen bonds are found, but weak interactions between lone pairs of terminal S atoms with H atoms are found: C12a–H12a···S21a [C12a–H12a = 0.95 Å, C12a···S21a = 3.379 (2) Å, H12a···S21a = 2.894 Å, angle C12a–H12a···S21a = 113°]; C17a–H17b···S21bÅ [C17a–H17b = 0.98 Å, C17a···S21b = 3.817 (3) Å, H17b···S21b = 2.847 Å, angle C17a–H17b···S21b = 170°]; C17a–H17c···S21ai [C17a–H17c = 0.98 Å, C17a···S21ai = 3.906 (3) Å, H17c···S21ai = 2.978 Å, angle C17a–H17c···S21ai = 159°]; C4b–H4b2···S3aii [C4b–H4b2 = 0.99 Å, C4b···S3aii = 3.796 (2) Å, H4b2···S3aii = 2.996 Å, angle C4b–H4b2···S3aii = 139°]; C8b–H8b···S21biii [C8b–H8b = 0.95 Å, C8b···S21biii = 3.657 (3) Å, H8b···S21biii = 2.944 Å, angle C8b–H8b···S21biii = 133°]. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y + 1, z + 1; (iii) x, y + 1, z.

Related literature top

Lawesson's reagent is widely used for transformation of a carbonyl functional group into a thiocarbonyl, see: Ozturk et al. (2007). Lawesson's reagent reacts with 1,2-naphthoquinone-1-methide precursors to give 1H-naphtho[1,2-e][1,3,2]oxathiaphosphinine 2-sulfide derivatives, which are of interest as herbicides, see: El-Kateb & El-Rahman (2006); El-Kateb et al. (1991); Maigali et al. (2009). For conformational calculations, see: Cremer & Pople (1975); Zefirov et al. (1990); Zotov et al. (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of Lawesson's reagent (3.31 g, 8.2 mmol) and o-hydroxybenzyl alcohol (1 g, 8.2 mmol) in o-xylene (30 ml) was refluxed for 2 h. The solvent was removed in vacuo and the residue was dissolved in 15 ml of methanol at reflux and cooled to room temperature. Insoluble impurity was filtered off and filtrate then stored at 253 K overnight. The precipitate formed was then filtered, washed ice-cold methanol. Recrystallization of the crude product from methanol gave 0.88 g of colourless crystals. Yield 35%, m.p. 357-358 K. IR-spectra, ν, cm-1: 3067 (CH-aromatic.), 2966, 2928, 2839 (CH-aliphatic), 1593 (CC), 1562, 1497, 1481, 1474, 1447 (P–C), 1300, 1261, 1211, 1173, 1111, 1022, 926, 833, 763, 729, 698, 683. MS(ESI): m/z 308 [M]+ (100), 275 [M-SH]+ (36), 243 (14), 242 (15), 169 (13), 153 (50), 139 (57), 137 [C7H5OS]+ (23), 122 (15). 1H NMR, δ: 3.82 s (3H, OCH3), 4.14-4.27 m (2H, CH2), 7.11 dd (2H, 3J = 8.86 Hz, 4J PH = 3.76 Hz, CH3OCCH), 7.18-7.21 m (2H, H-6,8), 7.36-7.40 m (2H, H-5,7), 7.90 dd (2H, 3J PH = 14.50 Hz, 3J = 8.86 Hz, PCCH). Anal. calc. for C14H13O2PS2, %: C 54.53; H 4.25; S 20.80. Found, %: C 54.61; H 4.21; S 20.71.

Single crystals for X-ray analysis were obtained by slow evaporation of a methanol solution. IR-spectrum was recorded (in KBr) on Shimadzu FTIR-8400S. Mass-spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO-d6 on Jeol JNM-ECX400 (400 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA-3000 elemental analyzer.

Refinement top

C-bound H-atoms were placed in calculated positions with C–H 0.95 Å for aromatic, 0.99 Å for methylene with Uiso(H) = 1.2Ueq(C) and 0.98 Å for methyl with Uiso(H) = 1.5Ueq(C). All H atoms refined as riding.

Technical problems during the diffraction experiment led to the loss of 87 reflections.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom-numbering scheme. Thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-(4-Methoxyphenyl)-4H-1,3,2-benzoxathiaphosphinine 2-sulfide top
Crystal data top
C14H13O2PS2Z = 4
Mr = 308.35F(000) = 640
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Melting point = 357–358 K
a = 10.0548 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.0804 (5) ÅCell parameters from 11905 reflections
c = 14.8913 (7) Åθ = 3.0–67.2°
α = 94.322 (4)°µ = 4.50 mm1
β = 91.121 (4)°T = 150 K
γ = 111.675 (4)°Prism, colourless
V = 1396.79 (12) Å30.20 × 0.14 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
4926 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
ω scansθmax = 67.4°, θmin = 3.0°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
h = 1212
Tmin = 0.499, Tmax = 0.816k = 1112
27233 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.5302P]
where P = (Fo2 + 2Fc2)/3
4926 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H13O2PS2γ = 111.675 (4)°
Mr = 308.35V = 1396.79 (12) Å3
Triclinic, P1Z = 4
a = 10.0548 (5) ÅCu Kα radiation
b = 10.0804 (5) ŵ = 4.50 mm1
c = 14.8913 (7) ÅT = 150 K
α = 94.322 (4)°0.20 × 0.14 × 0.05 mm
β = 91.121 (4)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
4926 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
4175 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.816Rint = 0.051
27233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4926 reflectionsΔρmin = 0.28 e Å3
345 parameters
Special details top

Experimental. CrysAlis Pro(Oxford Diffraction, 2010); Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1a0.02926 (16)0.29773 (15)0.14746 (10)0.0277 (3)
P2a0.15135 (6)0.24002 (6)0.11687 (3)0.02317 (13)
S3a0.04617 (6)0.01896 (6)0.12506 (4)0.02639 (13)
C4a0.1381 (2)0.0133 (2)0.12138 (15)0.0292 (5)
H4a10.20600.08760.12430.035*
H4a20.15000.06300.06400.035*
C5a0.1703 (2)0.0843 (2)0.19912 (14)0.0267 (5)
C6a0.0826 (2)0.2236 (2)0.21191 (14)0.0250 (5)
C7a0.1048 (2)0.2957 (3)0.28197 (15)0.0301 (5)
H7a0.04200.39100.28910.036*
C8a0.2218 (3)0.2251 (3)0.34208 (16)0.0377 (6)
H8a0.24040.27280.39060.045*
C9a0.3108 (3)0.0866 (3)0.33152 (17)0.0415 (6)
H9a0.39000.03920.37320.050*
C10a0.2862 (3)0.0153 (3)0.26080 (17)0.0365 (6)
H10a0.34810.08050.25430.044*
S21a0.32266 (6)0.29002 (6)0.18310 (4)0.02974 (14)
C11a0.1791 (2)0.3094 (2)0.00060 (14)0.0236 (4)
C12a0.3126 (2)0.3441 (2)0.04299 (14)0.0264 (5)
H12a0.38980.33820.00930.032*
C13a0.3357 (2)0.3873 (2)0.13437 (14)0.0268 (5)
H13a0.42780.41100.16310.032*
C14a0.2221 (2)0.3953 (2)0.18358 (14)0.0256 (5)
C15a0.0881 (2)0.3626 (2)0.14060 (15)0.0274 (5)
H15a0.01120.36970.17410.033*
C16a0.0669 (2)0.3200 (2)0.04959 (15)0.0266 (5)
H16a0.02480.29770.02070.032*
O14a0.23190 (17)0.43446 (17)0.27326 (10)0.0320 (4)
C17a0.3668 (3)0.4683 (4)0.32061 (17)0.0509 (7)
H17a0.39590.38560.31370.076*
H17b0.35820.49210.38470.076*
H17c0.43900.55050.29590.076*
O1b0.33103 (15)0.89365 (15)0.58572 (10)0.0249 (3)
P2b0.26816 (6)0.73662 (6)0.62048 (4)0.02184 (13)
S3b0.05104 (6)0.66625 (6)0.59061 (4)0.02646 (13)
C4b0.0279 (2)0.8259 (2)0.64340 (15)0.0277 (5)
H4b10.07330.81520.63350.033*
H4b20.04800.83180.70920.033*
C5b0.1228 (2)0.9638 (2)0.60826 (13)0.0236 (4)
C6b0.2616 (2)0.9922 (2)0.58256 (14)0.0227 (4)
C7b0.3455 (2)1.1212 (2)0.55097 (15)0.0275 (5)
H7b0.43941.13630.53230.033*
C8b0.2900 (3)1.2277 (2)0.54712 (16)0.0325 (5)
H8b0.34641.31710.52620.039*
C9b0.1529 (3)1.2042 (2)0.57358 (15)0.0316 (5)
H9b0.11561.27790.57170.038*
C10b0.0702 (2)1.0739 (2)0.60266 (14)0.0280 (5)
H10b0.02481.05820.61930.034*
S21b0.35029 (6)0.60954 (6)0.56361 (4)0.03111 (14)
C11b0.2993 (2)0.7683 (2)0.74075 (14)0.0224 (4)
C12b0.2885 (2)0.6534 (2)0.79025 (15)0.0278 (5)
H12b0.26940.56160.75960.033*
C13b0.3052 (2)0.6707 (2)0.88353 (15)0.0274 (5)
H13b0.29740.59160.91680.033*
C14b0.3335 (2)0.8054 (2)0.92778 (14)0.0251 (5)
C15b0.3472 (2)0.9212 (2)0.87922 (15)0.0286 (5)
H15b0.36871.01340.90990.034*
C16b0.3299 (2)0.9033 (2)0.78634 (15)0.0265 (5)
H16b0.33870.98300.75340.032*
O14b0.34857 (18)0.83466 (17)1.01926 (10)0.0333 (4)
C17b0.3349 (3)0.7191 (3)1.07348 (15)0.0344 (5)
H17d0.23940.64411.06200.052*
H17e0.34810.75471.13740.052*
H17f0.40790.67941.05810.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1a0.0310 (8)0.0231 (8)0.0286 (8)0.0104 (6)0.0055 (6)0.0001 (6)
P2a0.0256 (3)0.0229 (3)0.0193 (3)0.0072 (2)0.0004 (2)0.0017 (2)
S3a0.0313 (3)0.0222 (3)0.0255 (3)0.0100 (2)0.0008 (2)0.0022 (2)
C4a0.0276 (11)0.0264 (12)0.0311 (12)0.0065 (9)0.0054 (9)0.0046 (10)
C5a0.0270 (11)0.0287 (12)0.0253 (11)0.0116 (9)0.0051 (9)0.0018 (9)
C6a0.0251 (11)0.0292 (12)0.0224 (11)0.0127 (9)0.0002 (8)0.0014 (9)
C7a0.0344 (12)0.0346 (13)0.0268 (12)0.0186 (10)0.0044 (9)0.0052 (10)
C8a0.0458 (15)0.0510 (16)0.0269 (12)0.0304 (13)0.0016 (10)0.0036 (11)
C9a0.0369 (14)0.0535 (17)0.0358 (14)0.0220 (13)0.0118 (11)0.0099 (12)
C10a0.0275 (12)0.0388 (14)0.0406 (14)0.0112 (11)0.0020 (10)0.0054 (11)
S21a0.0317 (3)0.0305 (3)0.0249 (3)0.0086 (2)0.0063 (2)0.0038 (2)
C11a0.0255 (11)0.0197 (11)0.0224 (11)0.0048 (9)0.0014 (8)0.0024 (8)
C12a0.0247 (11)0.0280 (12)0.0248 (11)0.0074 (9)0.0044 (9)0.0031 (9)
C13a0.0252 (11)0.0291 (12)0.0229 (11)0.0067 (9)0.0011 (9)0.0024 (9)
C14a0.0317 (12)0.0218 (11)0.0212 (11)0.0072 (9)0.0031 (9)0.0028 (9)
C15a0.0253 (11)0.0294 (12)0.0273 (12)0.0095 (9)0.0071 (9)0.0027 (9)
C16a0.0252 (11)0.0258 (11)0.0283 (12)0.0094 (9)0.0013 (9)0.0001 (9)
O14a0.0348 (9)0.0405 (9)0.0191 (8)0.0126 (7)0.0020 (6)0.0009 (7)
C17a0.0446 (16)0.082 (2)0.0207 (12)0.0191 (15)0.0041 (11)0.0052 (13)
O1b0.0264 (8)0.0223 (8)0.0302 (8)0.0125 (6)0.0061 (6)0.0094 (6)
P2b0.0266 (3)0.0201 (3)0.0214 (3)0.0109 (2)0.0028 (2)0.0049 (2)
S3b0.0268 (3)0.0240 (3)0.0277 (3)0.0084 (2)0.0004 (2)0.0021 (2)
C4b0.0283 (11)0.0286 (12)0.0291 (12)0.0138 (10)0.0048 (9)0.0033 (9)
C5b0.0305 (11)0.0251 (11)0.0173 (10)0.0129 (9)0.0013 (8)0.0019 (8)
C6b0.0290 (11)0.0223 (11)0.0212 (10)0.0145 (9)0.0000 (8)0.0037 (9)
C7b0.0316 (12)0.0265 (12)0.0265 (11)0.0124 (10)0.0038 (9)0.0070 (9)
C8b0.0459 (14)0.0238 (12)0.0294 (12)0.0140 (11)0.0018 (10)0.0071 (10)
C9b0.0453 (14)0.0281 (13)0.0288 (12)0.0224 (11)0.0026 (10)0.0021 (10)
C10b0.0333 (12)0.0318 (13)0.0233 (11)0.0178 (10)0.0018 (9)0.0001 (9)
S21b0.0435 (3)0.0294 (3)0.0286 (3)0.0226 (3)0.0073 (2)0.0039 (2)
C11b0.0215 (10)0.0252 (11)0.0229 (11)0.0109 (9)0.0019 (8)0.0040 (9)
C12b0.0336 (12)0.0254 (12)0.0272 (11)0.0142 (10)0.0031 (9)0.0022 (9)
C13b0.0326 (12)0.0274 (12)0.0254 (11)0.0138 (10)0.0031 (9)0.0076 (9)
C14b0.0236 (11)0.0317 (12)0.0214 (11)0.0115 (9)0.0014 (8)0.0041 (9)
C15b0.0303 (12)0.0249 (12)0.0294 (12)0.0098 (9)0.0016 (9)0.0015 (9)
C16b0.0317 (12)0.0216 (11)0.0268 (11)0.0098 (9)0.0013 (9)0.0060 (9)
O14b0.0442 (9)0.0359 (9)0.0215 (8)0.0169 (8)0.0004 (7)0.0037 (7)
C17b0.0404 (14)0.0466 (15)0.0242 (12)0.0245 (12)0.0035 (10)0.0081 (11)
Geometric parameters (Å, º) top
O1a—C6a1.404 (3)O1b—C6b1.412 (2)
O1a—P2a1.6119 (15)O1b—P2b1.6033 (15)
P2a—C11a1.794 (2)P2b—C11b1.796 (2)
P2a—S21a1.9219 (8)P2b—S21b1.9197 (7)
P2a—S3a2.0766 (8)P2b—S3b2.0586 (8)
S3a—C4a1.835 (2)S3b—C4b1.831 (2)
C4a—C5a1.497 (3)C4b—C5b1.505 (3)
C4a—H4a10.9900C4b—H4b10.9900
C4a—H4a20.9900C4b—H4b20.9900
C5a—C6a1.385 (3)C5b—C6b1.385 (3)
C5a—C10a1.396 (3)C5b—C10b1.401 (3)
C6a—C7a1.375 (3)C6b—C7b1.386 (3)
C7a—C8a1.392 (3)C7b—C8b1.385 (3)
C7a—H7a0.9500C7b—H7b0.9500
C8a—C9a1.375 (4)C8b—C9b1.380 (3)
C8a—H8a0.9500C8b—H8b0.9500
C9a—C10a1.386 (4)C9b—C10b1.377 (3)
C9a—H9a0.9500C9b—H9b0.9500
C10a—H10a0.9500C10b—H10b0.9500
C11a—C12a1.389 (3)C11b—C12b1.392 (3)
C11a—C16a1.398 (3)C11b—C16b1.396 (3)
C12a—C13a1.385 (3)C12b—C13b1.386 (3)
C12a—H12a0.9500C12b—H12b0.9500
C13a—C14a1.393 (3)C13b—C14b1.390 (3)
C13a—H13a0.9500C13b—H13b0.9500
C14a—O14a1.355 (3)C14b—O14b1.365 (3)
C14a—C15a1.393 (3)C14b—C15b1.384 (3)
C15a—C16a1.378 (3)C15b—C16b1.380 (3)
C15a—H15a0.9500C15b—H15b0.9500
C16a—H16a0.9500C16b—H16b0.9500
O14a—C17a1.428 (3)O14b—C17b1.434 (3)
C17a—H17a0.9800C17b—H17d0.9800
C17a—H17b0.9800C17b—H17e0.9800
C17a—H17c0.9800C17b—H17f0.9800
C6a—O1a—P2a124.10 (13)C6b—O1b—P2b127.23 (13)
O1a—P2a—C11a99.46 (9)O1b—P2b—C11b104.09 (9)
O1a—P2a—S21a118.15 (7)O1b—P2b—S21b112.57 (6)
C11a—P2a—S21a114.65 (7)C11b—P2b—S21b114.84 (7)
O1a—P2a—S3a103.99 (6)O1b—P2b—S3b104.42 (6)
C11a—P2a—S3a109.24 (7)C11b—P2b—S3b108.63 (7)
S21a—P2a—S3a110.34 (3)S21b—P2b—S3b111.54 (3)
C4a—S3a—P2a98.13 (8)C4b—S3b—P2b95.79 (8)
C5a—C4a—S3a109.77 (15)C5b—C4b—S3b113.98 (15)
C5a—C4a—H4a1109.7C5b—C4b—H4b1108.8
S3a—C4a—H4a1109.7S3b—C4b—H4b1108.8
C5a—C4a—H4a2109.7C5b—C4b—H4b2108.8
S3a—C4a—H4a2109.7S3b—C4b—H4b2108.8
H4a1—C4a—H4a2108.2H4b1—C4b—H4b2107.7
C6a—C5a—C10a117.8 (2)C6b—C5b—C10b116.7 (2)
C6a—C5a—C4a119.70 (19)C6b—C5b—C4b124.61 (18)
C10a—C5a—C4a122.5 (2)C10b—C5b—C4b118.6 (2)
C7a—C6a—C5a123.1 (2)C5b—C6b—C7b122.63 (19)
C7a—C6a—O1a118.32 (19)C5b—C6b—O1b123.69 (19)
C5a—C6a—O1a118.51 (19)C7b—C6b—O1b113.68 (18)
C6a—C7a—C8a118.1 (2)C8b—C7b—C6b118.9 (2)
C6a—C7a—H7a121.0C8b—C7b—H7b120.6
C8a—C7a—H7a121.0C6b—C7b—H7b120.6
C9a—C8a—C7a120.3 (2)C9b—C8b—C7b120.1 (2)
C9a—C8a—H8a119.8C9b—C8b—H8b119.9
C7a—C8a—H8a119.8C7b—C8b—H8b119.9
C8a—C9a—C10a120.8 (2)C10b—C9b—C8b120.0 (2)
C8a—C9a—H9a119.6C10b—C9b—H9b120.0
C10a—C9a—H9a119.6C8b—C9b—H9b120.0
C9a—C10a—C5a120.0 (2)C9b—C10b—C5b121.6 (2)
C9a—C10a—H10a120.0C9b—C10b—H10b119.2
C5a—C10a—H10a120.0C5b—C10b—H10b119.2
C12a—C11a—C16a118.58 (19)C12b—C11b—C16b119.02 (19)
C12a—C11a—P2a119.61 (16)C12b—C11b—P2b118.69 (16)
C16a—C11a—P2a121.64 (16)C16b—C11b—P2b122.27 (16)
C13a—C12a—C11a121.5 (2)C13b—C12b—C11b121.0 (2)
C13a—C12a—H12a119.2C13b—C12b—H12b119.5
C11a—C12a—H12a119.2C11b—C12b—H12b119.5
C12a—C13a—C14a119.1 (2)C12b—C13b—C14b119.1 (2)
C12a—C13a—H13a120.5C12b—C13b—H13b120.4
C14a—C13a—H13a120.5C14b—C13b—H13b120.4
O14a—C14a—C13a124.18 (19)O14b—C14b—C15b115.25 (19)
O14a—C14a—C15a115.77 (19)O14b—C14b—C13b124.3 (2)
C13a—C14a—C15a120.05 (19)C15b—C14b—C13b120.4 (2)
C16a—C15a—C14a120.14 (19)C16b—C15b—C14b120.3 (2)
C16a—C15a—H15a119.9C16b—C15b—H15b119.9
C14a—C15a—H15a119.9C14b—C15b—H15b119.9
C15a—C16a—C11a120.6 (2)C15b—C16b—C11b120.2 (2)
C15a—C16a—H16a119.7C15b—C16b—H16b119.9
C11a—C16a—H16a119.7C11b—C16b—H16b119.9
C14a—O14a—C17a117.98 (18)C14b—O14b—C17b117.99 (17)
O14a—C17a—H17a109.5O14b—C17b—H17d109.5
O14a—C17a—H17b109.5O14b—C17b—H17e109.5
H17a—C17a—H17b109.5H17d—C17b—H17e109.5
O14a—C17a—H17c109.5O14b—C17b—H17f109.5
H17a—C17a—H17c109.5H17d—C17b—H17f109.5
H17b—C17a—H17c109.5H17e—C17b—H17f109.5
C6a—O1a—P2a—C11a146.02 (17)C6b—O1b—P2b—C11b82.72 (17)
C6a—O1a—P2a—S21a89.32 (17)C6b—O1b—P2b—S21b152.30 (14)
C6a—O1a—P2a—S3a33.33 (17)C6b—O1b—P2b—S3b31.14 (17)
O1a—P2a—S3a—C4a19.97 (10)O1b—P2b—S3b—C4b50.90 (9)
C11a—P2a—S3a—C4a85.47 (11)C11b—P2b—S3b—C4b59.70 (10)
S21a—P2a—S3a—C4a147.62 (8)S21b—P2b—S3b—C4b172.74 (8)
P2a—S3a—C4a—C5a59.70 (15)P2b—S3b—C4b—C5b55.70 (16)
S3a—C4a—C5a—C6a55.1 (2)S3b—C4b—C5b—C6b35.7 (3)
S3a—C4a—C5a—C10a124.4 (2)S3b—C4b—C5b—C10b145.92 (17)
C10a—C5a—C6a—C7a0.1 (3)C10b—C5b—C6b—C7b1.2 (3)
C4a—C5a—C6a—C7a179.6 (2)C4b—C5b—C6b—C7b179.7 (2)
C10a—C5a—C6a—O1a176.18 (19)C10b—C5b—C6b—O1b178.88 (18)
C4a—C5a—C6a—O1a4.2 (3)C4b—C5b—C6b—O1b0.4 (3)
P2a—O1a—C6a—C7a128.39 (18)P2b—O1b—C6b—C5b1.6 (3)
P2a—O1a—C6a—C5a55.3 (2)P2b—O1b—C6b—C7b178.51 (15)
C5a—C6a—C7a—C8a0.6 (3)C5b—C6b—C7b—C8b1.8 (3)
O1a—C6a—C7a—C8a175.56 (19)O1b—C6b—C7b—C8b178.33 (18)
C6a—C7a—C8a—C9a0.8 (3)C6b—C7b—C8b—C9b0.6 (3)
C7a—C8a—C9a—C10a0.4 (4)C7b—C8b—C9b—C10b0.9 (3)
C8a—C9a—C10a—C5a0.3 (4)C8b—C9b—C10b—C5b1.5 (3)
C6a—C5a—C10a—C9a0.5 (3)C6b—C5b—C10b—C9b0.4 (3)
C4a—C5a—C10a—C9a180.0 (2)C4b—C5b—C10b—C9b178.1 (2)
O1a—P2a—C11a—C12a150.77 (17)O1b—P2b—C11b—C12b164.91 (16)
S21a—P2a—C11a—C12a23.7 (2)S21b—P2b—C11b—C12b41.39 (19)
S3a—P2a—C11a—C12a100.70 (17)S3b—P2b—C11b—C12b84.27 (17)
O1a—P2a—C11a—C16a33.9 (2)O1b—P2b—C11b—C16b16.9 (2)
S21a—P2a—C11a—C16a160.92 (16)S21b—P2b—C11b—C16b140.42 (16)
S3a—P2a—C11a—C16a74.66 (19)S3b—P2b—C11b—C16b93.92 (18)
C16a—C11a—C12a—C13a0.6 (3)C16b—C11b—C12b—C13b1.1 (3)
P2a—C11a—C12a—C13a174.86 (17)P2b—C11b—C12b—C13b177.12 (17)
C11a—C12a—C13a—C14a0.3 (3)C11b—C12b—C13b—C14b0.2 (3)
C12a—C13a—C14a—O14a179.2 (2)C12b—C13b—C14b—O14b178.4 (2)
C12a—C13a—C14a—C15a1.1 (3)C12b—C13b—C14b—C15b1.1 (3)
O14a—C14a—C15a—C16a179.2 (2)O14b—C14b—C15b—C16b178.10 (19)
C13a—C14a—C15a—C16a1.1 (3)C13b—C14b—C15b—C16b1.4 (3)
C14a—C15a—C16a—C11a0.1 (3)C14b—C15b—C16b—C11b0.4 (3)
C12a—C11a—C16a—C15a0.7 (3)C12b—C11b—C16b—C15b0.8 (3)
P2a—C11a—C16a—C15a174.71 (17)P2b—C11b—C16b—C15b177.37 (17)
C13a—C14a—O14a—C17a0.6 (3)C15b—C14b—O14b—C17b179.73 (19)
C15a—C14a—O14a—C17a179.7 (2)C13b—C14b—O14b—C17b0.2 (3)

Experimental details

Crystal data
Chemical formulaC14H13O2PS2
Mr308.35
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.0548 (5), 10.0804 (5), 14.8913 (7)
α, β, γ (°)94.322 (4), 91.121 (4), 111.675 (4)
V3)1396.79 (12)
Z4
Radiation typeCu Kα
µ (mm1)4.50
Crystal size (mm)0.20 × 0.14 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.499, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
27233, 4926, 4175
Rint0.051
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.05
No. of reflections4926
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The authors thank Dr Alex Griffin (Agilent Technologies) for the X-ray diffraction experiment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Kateb, A. A. & El-Rahman, N. M. A. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 249–254.  CAS Google Scholar
First citationEl-Kateb, A. A., Hennawy, I. T., Shabana, R. & Abdel-Malek, H. A. (1991). Phosphorus Sulfur Silicon Relat. Elem. 63, 13–17.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMaigali, S. S., Shabana, R., El-Hussieny, M. & Soliman, F. M. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 2408–2426.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOzturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZotov, A. Yu., Palyulin, V. A. & Zefirov, N. S. (1997). J. Chem. Inf. Comput. Sci. 37, 766–773.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o388-o389
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds