organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{[2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl]­­oxy}acetate

aSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: fzq@jit.edu.cn

(Received 23 December 2010; accepted 5 January 2011; online 12 January 2011)

In the crystal structure of the title compound, C14H9F6NO3, mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds. The best planes through the benzene and pyridyl rings make a dihedral angle of 1.59 (12)°.

Related literature

The title compound is an important organic synthesis inter­mediate. For the synthetic procedure, see: Lilienkampf et al. (2009[Lilienkampf, A., Mao, J. L., Wan, B. J., Wang, Y. H., Franzblau, S. J. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109-2118.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9F6NO3

  • Mr = 353.22

  • Monoclinic, P 21 /c

  • a = 4.6980 (9) Å

  • b = 20.549 (4) Å

  • c = 15.176 (3) Å

  • β = 95.74 (3)°

  • V = 1457.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.953, Tmax = 0.984

  • 3017 measured reflections

  • 2676 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.01

  • 2676 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O2i 0.97 2.54 3.448 (4) 156
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, methyl 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)oxy)acetate is an important intermediate for the synthesis of drugs (Lilienkampf et al., 2009). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The phenyl ring and pyridyl ring are nearly coplanar as indicated by the dihedral angle of 1.59 (12) ° between the best planes through both rings.

The molecules show C—H···O and C—H···F intermolecular and intramolecular hydrogen bonds (Table 1) resulting in a three dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: Lilienkampf et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Lilienkampf et al., 2009). The crystals were obtained by dissolving (I) (0.5 g, 1.42 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93/0.96/0.97 Å for aromatic, methyl and methylene H atoms, respectively, and with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H atoms .

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound (I) with atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···O and C—H···F hydrogen bonds are shown by dashed lines.
Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate top
Crystal data top
C14H9F6NO3F(000) = 712
Mr = 353.22Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.6980 (9) Åθ = 9–13°
b = 20.549 (4) ŵ = 0.16 mm1
c = 15.176 (3) ÅT = 293 K
β = 95.74 (3)°Block, colourless
V = 1457.7 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.953, Tmax = 0.984l = 1818
3017 measured reflections3 standard reflections every 200 reflections
2676 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
2676 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H9F6NO3V = 1457.7 (5) Å3
Mr = 353.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6980 (9) ŵ = 0.16 mm1
b = 20.549 (4) ÅT = 293 K
c = 15.176 (3) Å0.30 × 0.20 × 0.10 mm
β = 95.74 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1747 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.953, Tmax = 0.9843 standard reflections every 200 reflections
3017 measured reflections intensity decay: 1%
2676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
2676 reflectionsΔρmin = 0.24 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.6586 (4)0.29913 (10)0.42412 (14)0.0383 (5)
O10.5803 (5)0.19700 (9)0.65680 (13)0.0594 (6)
C10.2049 (6)0.40690 (14)0.5400 (2)0.0526 (7)
H1A0.11740.44740.53220.063*
C20.1686 (6)0.37110 (15)0.61581 (19)0.0589 (8)
H2A0.05380.38740.65720.071*
O20.3296 (6)0.08697 (12)0.58771 (19)0.0863 (8)
C30.2985 (6)0.31288 (14)0.62992 (19)0.0504 (7)
H3A0.27510.28960.68130.060*
O30.6519 (6)0.02604 (12)0.66729 (19)0.0956 (9)
C40.4696 (5)0.28728 (13)0.56703 (17)0.0397 (6)
F40.7603 (4)0.18242 (10)0.30737 (13)0.0839 (7)
F51.1459 (4)0.17660 (9)0.39252 (12)0.0840 (7)
C50.5037 (5)0.32214 (11)0.48869 (16)0.0367 (6)
F61.0470 (4)0.26159 (9)0.31789 (13)0.0773 (6)
C60.3659 (5)0.38388 (11)0.47696 (17)0.0398 (6)
C70.6128 (6)0.22650 (13)0.57896 (17)0.0436 (6)
C80.7689 (6)0.20394 (12)0.51395 (17)0.0445 (7)
H8A0.86460.16430.51980.053*
C90.7797 (5)0.24217 (12)0.43878 (16)0.0390 (6)
C100.9331 (6)0.21592 (13)0.36447 (18)0.0453 (7)
C110.3985 (6)0.42315 (13)0.39586 (19)0.0462 (7)
C120.7187 (7)0.13683 (16)0.6768 (2)0.0603 (8)
H12A0.75050.13140.74060.072*
H12B0.90340.13650.65340.072*
C130.5397 (8)0.08173 (16)0.6375 (2)0.0637 (9)
C140.4960 (10)0.0321 (2)0.6392 (3)0.1169 (16)
H14A0.59400.06950.66520.175*
H14B0.48320.03540.57590.175*
H14C0.30700.03010.65800.175*
F10.2699 (4)0.48154 (8)0.39902 (12)0.0684 (5)
F20.6694 (3)0.43562 (7)0.38446 (11)0.0572 (5)
F30.2832 (3)0.39444 (8)0.32177 (11)0.0619 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0317 (11)0.0390 (12)0.0447 (12)0.0009 (9)0.0068 (9)0.0036 (10)
O10.0794 (15)0.0544 (12)0.0462 (11)0.0071 (11)0.0160 (10)0.0103 (9)
C10.0458 (16)0.0528 (17)0.0594 (19)0.0093 (13)0.0070 (14)0.0120 (14)
C20.0570 (19)0.068 (2)0.0536 (18)0.0110 (16)0.0174 (15)0.0152 (16)
O20.0896 (19)0.0781 (17)0.0894 (18)0.0053 (15)0.0004 (16)0.0006 (14)
C30.0475 (16)0.0623 (19)0.0426 (15)0.0016 (14)0.0108 (13)0.0029 (13)
O30.120 (2)0.0559 (15)0.113 (2)0.0237 (15)0.0212 (18)0.0158 (14)
C40.0316 (13)0.0459 (14)0.0418 (14)0.0052 (11)0.0050 (11)0.0066 (12)
F40.0720 (12)0.1071 (16)0.0741 (13)0.0201 (11)0.0146 (10)0.0478 (11)
F50.0813 (14)0.0987 (15)0.0746 (13)0.0501 (12)0.0215 (11)0.0041 (11)
C50.0287 (12)0.0400 (13)0.0419 (14)0.0010 (11)0.0061 (11)0.0073 (11)
F60.0927 (14)0.0688 (12)0.0784 (13)0.0018 (10)0.0485 (11)0.0007 (10)
C60.0294 (13)0.0383 (14)0.0508 (15)0.0013 (11)0.0004 (11)0.0063 (12)
C70.0433 (15)0.0463 (15)0.0405 (15)0.0025 (12)0.0014 (12)0.0038 (12)
C80.0471 (15)0.0401 (14)0.0461 (16)0.0037 (12)0.0040 (12)0.0003 (12)
C90.0324 (13)0.0417 (14)0.0429 (15)0.0031 (11)0.0041 (11)0.0037 (12)
C100.0442 (15)0.0437 (15)0.0483 (16)0.0059 (13)0.0072 (13)0.0044 (13)
C110.0364 (14)0.0446 (15)0.0579 (18)0.0025 (12)0.0062 (13)0.0012 (13)
C120.0614 (19)0.066 (2)0.0537 (18)0.0093 (16)0.0076 (15)0.0166 (16)
C130.078 (2)0.061 (2)0.055 (2)0.0157 (18)0.0226 (19)0.0079 (16)
C140.138 (4)0.072 (3)0.142 (4)0.001 (3)0.021 (3)0.003 (3)
F10.0688 (12)0.0480 (10)0.0911 (13)0.0169 (8)0.0205 (10)0.0105 (9)
F20.0416 (9)0.0577 (10)0.0730 (11)0.0068 (7)0.0090 (8)0.0047 (8)
F30.0648 (11)0.0651 (11)0.0537 (10)0.0066 (9)0.0046 (9)0.0042 (8)
Geometric parameters (Å, º) top
N—C91.311 (3)F5—C101.322 (3)
N—C51.362 (3)C5—C61.428 (3)
O1—C71.350 (3)F6—C101.320 (3)
O1—C121.416 (4)C6—C111.492 (4)
C1—C61.362 (4)C7—C81.368 (4)
C1—C21.391 (4)C8—C91.390 (3)
C1—H1A0.9300C8—H8A0.9300
C2—C31.350 (4)C9—C101.498 (3)
C2—H2A0.9300C11—F21.327 (3)
O2—C131.186 (4)C11—F31.336 (3)
C3—C41.410 (4)C11—F11.346 (3)
C3—H3A0.9300C12—C131.498 (5)
O3—C131.321 (4)C12—H12A0.9700
O3—C141.443 (5)C12—H12B0.9700
C4—C51.411 (4)C14—H14A0.9600
C4—C71.421 (4)C14—H14B0.9600
F4—C101.320 (3)C14—H14C0.9600
C9—N—C5116.2 (2)C8—C9—C10118.3 (2)
C7—O1—C12119.4 (2)F6—C10—F4106.0 (2)
C6—C1—C2121.3 (3)F6—C10—F5105.8 (2)
C6—C1—H1A119.3F4—C10—F5106.7 (2)
C2—C1—H1A119.3F6—C10—C9113.5 (2)
C3—C2—C1120.6 (3)F4—C10—C9111.8 (2)
C3—C2—H2A119.7F5—C10—C9112.5 (2)
C1—C2—H2A119.7F2—C11—F3106.8 (2)
C2—C3—C4120.2 (3)F2—C11—F1105.8 (2)
C2—C3—H3A119.9F3—C11—F1106.1 (2)
C4—C3—H3A119.9F2—C11—C6113.0 (2)
C13—O3—C14116.3 (3)F3—C11—C6112.9 (2)
C3—C4—C5120.1 (2)F1—C11—C6111.7 (2)
C3—C4—C7122.4 (2)O1—C12—C13110.3 (2)
C5—C4—C7117.5 (2)O1—C12—H12A109.6
N—C5—C4122.9 (2)C13—C12—H12A109.6
N—C5—C6119.1 (2)O1—C12—H12B109.6
C4—C5—C6117.9 (2)C13—C12—H12B109.6
C1—C6—C5119.9 (3)H12A—C12—H12B108.1
C1—C6—C11120.1 (2)O2—C13—O3125.1 (4)
C5—C6—C11120.0 (2)O2—C13—C12125.7 (3)
O1—C7—C8126.5 (2)O3—C13—C12109.2 (3)
O1—C7—C4114.4 (2)O3—C14—H14A109.5
C8—C7—C4119.1 (2)O3—C14—H14B109.5
C7—C8—C9117.8 (2)H14A—C14—H14B109.5
C7—C8—H8A121.1O3—C14—H14C109.5
C9—C8—H8A121.1H14A—C14—H14C109.5
N—C9—C8126.4 (2)H14B—C14—H14C109.5
N—C9—C10115.3 (2)
C6—C1—C2—C31.6 (5)C4—C7—C8—C90.1 (4)
C1—C2—C3—C40.9 (4)C5—N—C9—C81.1 (4)
C2—C3—C4—C50.6 (4)C5—N—C9—C10176.2 (2)
C2—C3—C4—C7179.5 (3)C7—C8—C9—N1.4 (4)
C9—N—C5—C40.7 (3)C7—C8—C9—C10175.9 (2)
C9—N—C5—C6180.0 (2)N—C9—C10—F632.0 (3)
C3—C4—C5—N177.9 (2)C8—C9—C10—F6150.4 (2)
C7—C4—C5—N2.1 (3)N—C9—C10—F487.8 (3)
C3—C4—C5—C61.4 (3)C8—C9—C10—F489.8 (3)
C7—C4—C5—C6178.7 (2)N—C9—C10—F5152.1 (2)
C2—C1—C6—C50.7 (4)C8—C9—C10—F530.3 (3)
C2—C1—C6—C11179.4 (2)C1—C6—C11—F2123.2 (3)
N—C5—C6—C1178.5 (2)C5—C6—C11—F256.7 (3)
C4—C5—C6—C10.8 (3)C1—C6—C11—F3115.5 (3)
N—C5—C6—C111.6 (3)C5—C6—C11—F364.6 (3)
C4—C5—C6—C11179.1 (2)C1—C6—C11—F14.0 (3)
C12—O1—C7—C80.5 (4)C5—C6—C11—F1175.9 (2)
C12—O1—C7—C4178.6 (2)C7—O1—C12—C1385.0 (3)
C3—C4—C7—O12.6 (4)C14—O3—C13—O22.8 (5)
C5—C4—C7—O1177.5 (2)C14—O3—C13—C12176.8 (3)
C3—C4—C7—C8178.2 (2)O1—C12—C13—O28.6 (4)
C5—C4—C7—C81.7 (4)O1—C12—C13—O3171.1 (3)
O1—C7—C8—C9179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F10.932.322.675 (3)102
C12—H12B···O2i0.972.543.448 (4)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H9F6NO3
Mr353.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.6980 (9), 20.549 (4), 15.176 (3)
β (°) 95.74 (3)
V3)1457.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3017, 2676, 1747
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.01
No. of reflections2676
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.972.543.448 (4)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (09kjd150011). The authors thank the Center of Testing and Analysis, Nanjing University, for help with the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLilienkampf, A., Mao, J. L., Wan, B. J., Wang, Y. H., Franzblau, S. J. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds