

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate

Zhi-Qiang Feng,* Xiao-Li Yang, Yuan-Feng Ye, Huai-Qing Wang and Tao Dong

School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China Correspondence e-mail: fzg@jit.edu.cn

Received 23 December 2010; accepted 5 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.146; data-to-parameter ratio = 12.3.

In the crystal structure of the title compound, $C_{14}H_9F_6NO_3$, molecules are connected by intermolecular C-H···O hydrogen bonds. The best planes through the benzene and pyridyl rings make a dihedral angle of $1.59 (12)^{\circ}$.

Related literature

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: Lilienkampf et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C14H9F6NO3

$M_r = 353.22$
Monoclinic, P21/
a = 4.6980 (9) Å
b = 20.549 (4) Å

c = 15.176 (3) Å
$\beta = 95.74 \ (3)^{\circ}$
V = 1457.7 (5) Å ³
Z = 4
Mo $K\alpha$ radiation

organic compounds

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

217 parameters

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.24$ e Å⁻³

H-atom parameters constrained

 $\mu = 0.16 \text{ mm}^{-1}$ T = 293 K

Data collection

Enraf–Nonius CAD-4	2676 independent reflections
diffractometer	1747 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.019$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.953, T_{\max} = 0.984$	reflections
3017 measured reflections	intensity decay: 1%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.146$ S = 1.012676 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12B\cdots O2^{i}$	0.97	2.54	3.448 (4)	156
6	1			

Symmetry code: (i) x + 1, y, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (09kjd150011). The authors thank the Center of Testing and Analysis, Nanjing University, for help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2070).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Lilienkampf, A., Mao, J. L., Wan, B. J., Wang, Y. H., Franzblau, S. J. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109-2118.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o321 [doi:10.1107/S1600536811000328]

Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate

Zhi-Qiang Feng, Xiao-Li Yang, Yuan-Feng Ye, Huai-Qing Wang and Tao Dong

S1. Comment

The title compound, methyl 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)oxy)acetate is an important intermediate for the synthesis of drugs (Lilienkampf *et al.*, 2009). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

The phenyl ring and pyridyl ring are nearly coplanar as indicated by the dihedral angle of $1.59 (12)^{\circ}$ between the best planes through both rings.

The molecules show C—H…O and C—H…F intermolecular and intramolecular hydrogen bonds (Table 1) resulting in a three dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

S2. Experimental

The title compound, (I) was prepared by a method reported in literature (Lilienkampf *et al.*, 2009). The crystals were obtained by dissolving (I) (0.5 g, 1.42 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

S3. Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93/0.96/0.97 Å for aromatic, methyl and methylene H atoms, respectively, and with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H, and x = 1.5 for other H atoms .

Figure 1

Molecular structure of title compound (I) with atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown by dashed lines.

Figure 2

A packing diagram for (I). C—H···O and C—H···F hydrogen bonds are shown by dashed lines.

Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate

Crystal data	
$C_{14}H_9F_6NO_3$	F(000) = 712
$M_r = 353.22$	$D_{\rm x} = 1.609 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 4.6980 (9) Å	$\theta = 9 - 13^{\circ}$
b = 20.549 (4) Å	$\mu = 0.16 \mathrm{~mm^{-1}}$
c = 15.176 (3) Å	T = 293 K
$\beta = 95.74 \ (3)^{\circ}$	Block, colourless
V = 1457.7 (5) Å ³	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4	2676 independent reflections
diffractometer	1747 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.019$
Graphite monochromator	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 5$
Absorption correction: ψ scan	$k = 0 \longrightarrow 24$
(North et al., 1968)	$l = -18 \rightarrow 18$
$T_{\min} = 0.953, T_{\max} = 0.984$	3 standard reflections every 200 reflections
3017 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.01	H-atom parameters constrained

2676 reflections	$w = 1/[\sigma^2(F_o^2) + (0.080P)^2]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N	0.6586 (4)	0.29913 (10)	0.42412 (14)	0.0383 (5)	
01	0.5803 (5)	0.19700 (9)	0.65680 (13)	0.0594 (6)	
C1	0.2049 (6)	0.40690 (14)	0.5400 (2)	0.0526 (7)	
H1A	0.1174	0.4474	0.5322	0.063*	
C2	0.1686 (6)	0.37110 (15)	0.61581 (19)	0.0589 (8)	
H2A	0.0538	0.3874	0.6572	0.071*	
O2	0.3296 (6)	0.08697 (12)	0.58771 (19)	0.0863 (8)	
C3	0.2985 (6)	0.31288 (14)	0.62992 (19)	0.0504 (7)	
H3A	0.2751	0.2896	0.6813	0.060*	
03	0.6519 (6)	0.02604 (12)	0.66729 (19)	0.0956 (9)	
C4	0.4696 (5)	0.28728 (13)	0.56703 (17)	0.0397 (6)	
F4	0.7603 (4)	0.18242 (10)	0.30737 (13)	0.0839 (7)	
F5	1.1459 (4)	0.17660 (9)	0.39252 (12)	0.0840 (7)	
C5	0.5037 (5)	0.32214 (11)	0.48869 (16)	0.0367 (6)	
F6	1.0470 (4)	0.26159 (9)	0.31789 (13)	0.0773 (6)	

C6	0.3659 (5)	0.38388 (11)	0.47696 (17)	0.0398 (6)
C7	0.6128 (6)	0.22650 (13)	0.57896 (17)	0.0436 (6)
C8	0.7689 (6)	0.20394 (12)	0.51395 (17)	0.0445 (7)
H8A	0.8646	0.1643	0.5198	0.053*
С9	0.7797 (5)	0.24217 (12)	0.43878 (16)	0.0390 (6)
C10	0.9331 (6)	0.21592 (13)	0.36447 (18)	0.0453 (7)
C11	0.3985 (6)	0.42315 (13)	0.39586 (19)	0.0462 (7)
C12	0.7187 (7)	0.13683 (16)	0.6768 (2)	0.0603 (8)
H12A	0.7505	0.1314	0.7406	0.072*
H12B	0.9034	0.1365	0.6534	0.072*
C13	0.5397 (8)	0.08173 (16)	0.6375 (2)	0.0637 (9)
C14	0.4960 (10)	-0.0321 (2)	0.6392 (3)	0.1169 (16)
H14A	0.5940	-0.0695	0.6652	0.175*
H14B	0.4832	-0.0354	0.5759	0.175*
H14C	0.3070	-0.0301	0.6580	0.175*
F1	0.2699 (4)	0.48154 (8)	0.39902 (12)	0.0684 (5)
F2	0.6694 (3)	0.43562 (7)	0.38446 (11)	0.0572 (5)
F3	0.2832 (3)	0.39444 (8)	0.32177 (11)	0.0619 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
N	0.0317 (11)	0.0390 (12)	0.0447 (12)	-0.0009 (9)	0.0068 (9)	-0.0036 (10)
01	0.0794 (15)	0.0544 (12)	0.0462 (11)	0.0071 (11)	0.0160 (10)	0.0103 (9)
C1	0.0458 (16)	0.0528 (17)	0.0594 (19)	0.0093 (13)	0.0070 (14)	-0.0120 (14)
C2	0.0570 (19)	0.068 (2)	0.0536 (18)	0.0110 (16)	0.0174 (15)	-0.0152 (16)
O2	0.0896 (19)	0.0781 (17)	0.0894 (18)	-0.0053 (15)	-0.0004 (16)	-0.0006 (14)
C3	0.0475 (16)	0.0623 (19)	0.0426 (15)	-0.0016 (14)	0.0108 (13)	-0.0029 (13)
03	0.120 (2)	0.0559 (15)	0.113 (2)	0.0237 (15)	0.0212 (18)	0.0158 (14)
C4	0.0316 (13)	0.0459 (14)	0.0418 (14)	-0.0052 (11)	0.0050 (11)	-0.0066 (12)
F4	0.0720 (12)	0.1071 (16)	0.0741 (13)	-0.0201 (11)	0.0146 (10)	-0.0478 (11)
F5	0.0813 (14)	0.0987 (15)	0.0746 (13)	0.0501 (12)	0.0215 (11)	0.0041 (11)
C5	0.0287 (12)	0.0400 (13)	0.0419 (14)	-0.0010 (11)	0.0061 (11)	-0.0073 (11)
F6	0.0927 (14)	0.0688 (12)	0.0784 (13)	0.0018 (10)	0.0485 (11)	0.0007 (10)
C6	0.0294 (13)	0.0383 (14)	0.0508 (15)	-0.0013 (11)	-0.0004 (11)	-0.0063 (12)
C7	0.0433 (15)	0.0463 (15)	0.0405 (15)	-0.0025 (12)	0.0014 (12)	0.0038 (12)
C8	0.0471 (15)	0.0401 (14)	0.0461 (16)	0.0037 (12)	0.0040 (12)	-0.0003 (12)
C9	0.0324 (13)	0.0417 (14)	0.0429 (15)	-0.0031 (11)	0.0041 (11)	-0.0037 (12)
C10	0.0442 (15)	0.0437 (15)	0.0483 (16)	0.0059 (13)	0.0072 (13)	-0.0044 (13)
C11	0.0364 (14)	0.0446 (15)	0.0579 (18)	0.0025 (12)	0.0062 (13)	-0.0012 (13)
C12	0.0614 (19)	0.066 (2)	0.0537 (18)	0.0093 (16)	0.0076 (15)	0.0166 (16)
C13	0.078 (2)	0.061 (2)	0.055 (2)	0.0157 (18)	0.0226 (19)	0.0079 (16)
C14	0.138 (4)	0.072 (3)	0.142 (4)	0.001 (3)	0.021 (3)	-0.003 (3)
F1	0.0688 (12)	0.0480 (10)	0.0911 (13)	0.0169 (8)	0.0205 (10)	0.0105 (9)
F2	0.0416 (9)	0.0577 (10)	0.0730 (11)	-0.0068 (7)	0.0090 (8)	0.0047 (8)
F3	0.0648 (11)	0.0651 (11)	0.0537 (10)	-0.0066 (9)	-0.0046 (9)	0.0042 (8)

Geometric parameters (Å, °)

N—C9	1.311 (3)	F5—C10	1.322 (3)	_
N—C5	1.362 (3)	C5—C6	1.428 (3)	
O1—C7	1.350 (3)	F6C10	1.320 (3)	
O1—C12	1.416 (4)	C6—C11	1.492 (4)	
C1—C6	1.362 (4)	C7—C8	1.368 (4)	
C1—C2	1.391 (4)	C8—C9	1.390 (3)	
C1—H1A	0.9300	C8—H8A	0.9300	
С2—С3	1.350 (4)	C9—C10	1.498 (3)	
C2—H2A	0.9300	C11—F2	1.327 (3)	
O2—C13	1.186 (4)	C11—F3	1.336 (3)	
C3—C4	1.410 (4)	C11—F1	1.346 (3)	
С3—НЗА	0.9300	C12—C13	1.498 (5)	
O3—C13	1.321 (4)	C12—H12A	0.9700	
O3—C14	1.443 (5)	C12—H12B	0.9700	
C4—C5	1.411 (4)	C14—H14A	0.9600	
C4—C7	1.421 (4)	C14—H14B	0.9600	
F4—C10	1.320 (3)	C14—H14C	0.9600	
C9—N—C5	116.2 (2)	C8—C9—C10	118.3 (2)	
C7—O1—C12	119.4 (2)	F6	106.0 (2)	
C6—C1—C2	121.3 (3)	F6	105.8 (2)	
C6—C1—H1A	119.3	F4—C10—F5	106.7 (2)	
C2C1H1A	119.3	F6C10C9	113.5 (2)	
C3—C2—C1	120.6 (3)	F4—C10—C9	111.8 (2)	
C3—C2—H2A	119.7	F5-C10-C9	112.5 (2)	
C1—C2—H2A	119.7	F2—C11—F3	106.8 (2)	
C2—C3—C4	120.2 (3)	F2—C11—F1	105.8 (2)	
С2—С3—НЗА	119.9	F3—C11—F1	106.1 (2)	
С4—С3—НЗА	119.9	F2—C11—C6	113.0 (2)	
C13—O3—C14	116.3 (3)	F3—C11—C6	112.9 (2)	
C3—C4—C5	120.1 (2)	F1—C11—C6	111.7 (2)	
C3—C4—C7	122.4 (2)	O1—C12—C13	110.3 (2)	
C5—C4—C7	117.5 (2)	O1—C12—H12A	109.6	
NC5C4	122.9 (2)	C13—C12—H12A	109.6	
N-C5-C6	119.1 (2)	O1—C12—H12B	109.6	
C4—C5—C6	117.9 (2)	C13—C12—H12B	109.6	
C1—C6—C5	119.9 (3)	H12A—C12—H12B	108.1	
C1-C6-C11	120.1 (2)	O2—C13—O3	125.1 (4)	
C5-C6-C11	120.0 (2)	O2—C13—C12	125.7 (3)	
O1—C7—C8	126.5 (2)	O3—C13—C12	109.2 (3)	
O1—C7—C4	114.4 (2)	O3—C14—H14A	109.5	
C8—C7—C4	119.1 (2)	O3—C14—H14B	109.5	
С7—С8—С9	117.8 (2)	H14A—C14—H14B	109.5	
С7—С8—Н8А	121.1	O3—C14—H14C	109.5	
С9—С8—Н8А	121.1	H14A—C14—H14C	109.5	
N—C9—C8	126.4 (2)	H14B—C14—H14C	109.5	

N—C9—C10	115.3 (2)		
C6—C1—C2—C3	1.6 (5)	C4—C7—C8—C9	0.1 (4)
C1—C2—C3—C4	-0.9 (4)	C5—N—C9—C8	-1.1(4)
C2—C3—C4—C5	-0.6 (4)	C5—N—C9—C10	176.2 (2)
C2—C3—C4—C7	179.5 (3)	C7—C8—C9—N	1.4 (4)
C9—N—C5—C4	-0.7 (3)	C7—C8—C9—C10	-175.9 (2)
C9—N—C5—C6	-180.0 (2)	N	32.0 (3)
C3—C4—C5—N	-177.9 (2)	C8—C9—C10—F6	-150.4 (2)
C7—C4—C5—N	2.1 (3)	N-C9-C10-F4	-87.8 (3)
C3—C4—C5—C6	1.4 (3)	C8—C9—C10—F4	89.8 (3)
C7—C4—C5—C6	-178.7 (2)	N-C9-C10-F5	152.1 (2)
C2-C1-C6-C5	-0.7 (4)	C8—C9—C10—F5	-30.3 (3)
C2-C1-C6-C11	179.4 (2)	C1—C6—C11—F2	123.2 (3)
N-C5-C6-C1	178.5 (2)	C5—C6—C11—F2	-56.7 (3)
C4—C5—C6—C1	-0.8 (3)	C1—C6—C11—F3	-115.5 (3)
N-C5-C6-C11	-1.6 (3)	C5—C6—C11—F3	64.6 (3)
C4—C5—C6—C11	179.1 (2)	C1-C6-C11-F1	4.0 (3)
C12—O1—C7—C8	0.5 (4)	C5—C6—C11—F1	-175.9 (2)
C12—O1—C7—C4	-178.6 (2)	C7—O1—C12—C13	-85.0 (3)
C3—C4—C7—O1	-2.6 (4)	C14—O3—C13—O2	-2.8 (5)
C5—C4—C7—O1	177.5 (2)	C14—O3—C13—C12	176.8 (3)
C3—C4—C7—C8	178.2 (2)	O1—C12—C13—O2	8.6 (4)
C5—C4—C7—C8	-1.7 (4)	O1—C12—C13—O3	-171.1 (3)
01—C7—C8—C9	-179.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C1—H1A…F1	0.93	2.32	2.675 (3)	102
C12—H12 B ····O2 ⁱ	0.97	2.54	3.448 (4)	156

Symmetry code: (i) x+1, y, z.