supplementary materials


vm2070 scheme

Acta Cryst. (2011). E67, o321    [ doi:10.1107/S1600536811000328 ]

Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate

Z.-Q. Feng, X.-L. Yang, Y.-F. Ye, H.-Q. Wang and T. Dong

Abstract top

In the crystal structure of the title compound, C14H9F6NO3, molecules are connected by intermolecular C-H...O hydrogen bonds. The best planes through the benzene and pyridyl rings make a dihedral angle of 1.59 (12)°.

Comment top

The title compound, methyl 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)oxy)acetate is an important intermediate for the synthesis of drugs (Lilienkampf et al., 2009). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The phenyl ring and pyridyl ring are nearly coplanar as indicated by the dihedral angle of 1.59 (12) ° between the best planes through both rings.

The molecules show C—H···O and C—H···F intermolecular and intramolecular hydrogen bonds (Table 1) resulting in a three dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: Lilienkampf et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Lilienkampf et al., 2009). The crystals were obtained by dissolving (I) (0.5 g, 1.42 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93/0.96/0.97 Å for aromatic, methyl and methylene H atoms, respectively, and with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H atoms .

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound (I) with atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···O and C—H···F hydrogen bonds are shown by dashed lines.
Methyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl]oxy}acetate top
Crystal data top
C14H9F6NO3F(000) = 712
Mr = 353.22Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.6980 (9) Åθ = 9–13°
b = 20.549 (4) ŵ = 0.16 mm1
c = 15.176 (3) ÅT = 293 K
β = 95.74 (3)°Block, colourless
V = 1457.7 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.953, Tmax = 0.984l = 1818
3017 measured reflections3 standard reflections every 200 reflections
2676 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
2676 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H9F6NO3V = 1457.7 (5) Å3
Mr = 353.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6980 (9) ŵ = 0.16 mm1
b = 20.549 (4) ÅT = 293 K
c = 15.176 (3) Å0.30 × 0.20 × 0.10 mm
β = 95.74 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1747 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.953, Tmax = 0.984θmax = 25.3°
3017 measured reflections3 standard reflections every 200 reflections
2676 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.146Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.24 e Å3
2676 reflectionsAbsolute structure: ?
217 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.6586 (4)0.29913 (10)0.42412 (14)0.0383 (5)
O10.5803 (5)0.19700 (9)0.65680 (13)0.0594 (6)
C10.2049 (6)0.40690 (14)0.5400 (2)0.0526 (7)
H1A0.11740.44740.53220.063*
C20.1686 (6)0.37110 (15)0.61581 (19)0.0589 (8)
H2A0.05380.38740.65720.071*
O20.3296 (6)0.08697 (12)0.58771 (19)0.0863 (8)
C30.2985 (6)0.31288 (14)0.62992 (19)0.0504 (7)
H3A0.27510.28960.68130.060*
O30.6519 (6)0.02604 (12)0.66729 (19)0.0956 (9)
C40.4696 (5)0.28728 (13)0.56703 (17)0.0397 (6)
F40.7603 (4)0.18242 (10)0.30737 (13)0.0839 (7)
F51.1459 (4)0.17660 (9)0.39252 (12)0.0840 (7)
C50.5037 (5)0.32214 (11)0.48869 (16)0.0367 (6)
F61.0470 (4)0.26159 (9)0.31789 (13)0.0773 (6)
C60.3659 (5)0.38388 (11)0.47696 (17)0.0398 (6)
C70.6128 (6)0.22650 (13)0.57896 (17)0.0436 (6)
C80.7689 (6)0.20394 (12)0.51395 (17)0.0445 (7)
H8A0.86460.16430.51980.053*
C90.7797 (5)0.24217 (12)0.43878 (16)0.0390 (6)
C100.9331 (6)0.21592 (13)0.36447 (18)0.0453 (7)
C110.3985 (6)0.42315 (13)0.39586 (19)0.0462 (7)
C120.7187 (7)0.13683 (16)0.6768 (2)0.0603 (8)
H12A0.75050.13140.74060.072*
H12B0.90340.13650.65340.072*
C130.5397 (8)0.08173 (16)0.6375 (2)0.0637 (9)
C140.4960 (10)0.0321 (2)0.6392 (3)0.1169 (16)
H14A0.59400.06950.66520.175*
H14B0.48320.03540.57590.175*
H14C0.30700.03010.65800.175*
F10.2699 (4)0.48154 (8)0.39902 (12)0.0684 (5)
F20.6694 (3)0.43562 (7)0.38446 (11)0.0572 (5)
F30.2832 (3)0.39444 (8)0.32177 (11)0.0619 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0317 (11)0.0390 (12)0.0447 (12)0.0009 (9)0.0068 (9)0.0036 (10)
O10.0794 (15)0.0544 (12)0.0462 (11)0.0071 (11)0.0160 (10)0.0103 (9)
C10.0458 (16)0.0528 (17)0.0594 (19)0.0093 (13)0.0070 (14)0.0120 (14)
C20.0570 (19)0.068 (2)0.0536 (18)0.0110 (16)0.0174 (15)0.0152 (16)
O20.0896 (19)0.0781 (17)0.0894 (18)0.0053 (15)0.0004 (16)0.0006 (14)
C30.0475 (16)0.0623 (19)0.0426 (15)0.0016 (14)0.0108 (13)0.0029 (13)
O30.120 (2)0.0559 (15)0.113 (2)0.0237 (15)0.0212 (18)0.0158 (14)
C40.0316 (13)0.0459 (14)0.0418 (14)0.0052 (11)0.0050 (11)0.0066 (12)
F40.0720 (12)0.1071 (16)0.0741 (13)0.0201 (11)0.0146 (10)0.0478 (11)
F50.0813 (14)0.0987 (15)0.0746 (13)0.0501 (12)0.0215 (11)0.0041 (11)
C50.0287 (12)0.0400 (13)0.0419 (14)0.0010 (11)0.0061 (11)0.0073 (11)
F60.0927 (14)0.0688 (12)0.0784 (13)0.0018 (10)0.0485 (11)0.0007 (10)
C60.0294 (13)0.0383 (14)0.0508 (15)0.0013 (11)0.0004 (11)0.0063 (12)
C70.0433 (15)0.0463 (15)0.0405 (15)0.0025 (12)0.0014 (12)0.0038 (12)
C80.0471 (15)0.0401 (14)0.0461 (16)0.0037 (12)0.0040 (12)0.0003 (12)
C90.0324 (13)0.0417 (14)0.0429 (15)0.0031 (11)0.0041 (11)0.0037 (12)
C100.0442 (15)0.0437 (15)0.0483 (16)0.0059 (13)0.0072 (13)0.0044 (13)
C110.0364 (14)0.0446 (15)0.0579 (18)0.0025 (12)0.0062 (13)0.0012 (13)
C120.0614 (19)0.066 (2)0.0537 (18)0.0093 (16)0.0076 (15)0.0166 (16)
C130.078 (2)0.061 (2)0.055 (2)0.0157 (18)0.0226 (19)0.0079 (16)
C140.138 (4)0.072 (3)0.142 (4)0.001 (3)0.021 (3)0.003 (3)
F10.0688 (12)0.0480 (10)0.0911 (13)0.0169 (8)0.0205 (10)0.0105 (9)
F20.0416 (9)0.0577 (10)0.0730 (11)0.0068 (7)0.0090 (8)0.0047 (8)
F30.0648 (11)0.0651 (11)0.0537 (10)0.0066 (9)0.0046 (9)0.0042 (8)
Geometric parameters (Å, °) top
N—C91.311 (3)F5—C101.322 (3)
N—C51.362 (3)C5—C61.428 (3)
O1—C71.350 (3)F6—C101.320 (3)
O1—C121.416 (4)C6—C111.492 (4)
C1—C61.362 (4)C7—C81.368 (4)
C1—C21.391 (4)C8—C91.390 (3)
C1—H1A0.9300C8—H8A0.9300
C2—C31.350 (4)C9—C101.498 (3)
C2—H2A0.9300C11—F21.327 (3)
O2—C131.186 (4)C11—F31.336 (3)
C3—C41.410 (4)C11—F11.346 (3)
C3—H3A0.9300C12—C131.498 (5)
O3—C131.321 (4)C12—H12A0.9700
O3—C141.443 (5)C12—H12B0.9700
C4—C51.411 (4)C14—H14A0.9600
C4—C71.421 (4)C14—H14B0.9600
F4—C101.320 (3)C14—H14C0.9600
C9—N—C5116.2 (2)C8—C9—C10118.3 (2)
C7—O1—C12119.4 (2)F6—C10—F4106.0 (2)
C6—C1—C2121.3 (3)F6—C10—F5105.8 (2)
C6—C1—H1A119.3F4—C10—F5106.7 (2)
C2—C1—H1A119.3F6—C10—C9113.5 (2)
C3—C2—C1120.6 (3)F4—C10—C9111.8 (2)
C3—C2—H2A119.7F5—C10—C9112.5 (2)
C1—C2—H2A119.7F2—C11—F3106.8 (2)
C2—C3—C4120.2 (3)F2—C11—F1105.8 (2)
C2—C3—H3A119.9F3—C11—F1106.1 (2)
C4—C3—H3A119.9F2—C11—C6113.0 (2)
C13—O3—C14116.3 (3)F3—C11—C6112.9 (2)
C3—C4—C5120.1 (2)F1—C11—C6111.7 (2)
C3—C4—C7122.4 (2)O1—C12—C13110.3 (2)
C5—C4—C7117.5 (2)O1—C12—H12A109.6
N—C5—C4122.9 (2)C13—C12—H12A109.6
N—C5—C6119.1 (2)O1—C12—H12B109.6
C4—C5—C6117.9 (2)C13—C12—H12B109.6
C1—C6—C5119.9 (3)H12A—C12—H12B108.1
C1—C6—C11120.1 (2)O2—C13—O3125.1 (4)
C5—C6—C11120.0 (2)O2—C13—C12125.7 (3)
O1—C7—C8126.5 (2)O3—C13—C12109.2 (3)
O1—C7—C4114.4 (2)O3—C14—H14A109.5
C8—C7—C4119.1 (2)O3—C14—H14B109.5
C7—C8—C9117.8 (2)H14A—C14—H14B109.5
C7—C8—H8A121.1O3—C14—H14C109.5
C9—C8—H8A121.1H14A—C14—H14C109.5
N—C9—C8126.4 (2)H14B—C14—H14C109.5
N—C9—C10115.3 (2)
C6—C1—C2—C31.6 (5)C4—C7—C8—C90.1 (4)
C1—C2—C3—C40.9 (4)C5—N—C9—C81.1 (4)
C2—C3—C4—C50.6 (4)C5—N—C9—C10176.2 (2)
C2—C3—C4—C7179.5 (3)C7—C8—C9—N1.4 (4)
C9—N—C5—C40.7 (3)C7—C8—C9—C10175.9 (2)
C9—N—C5—C6180.0 (2)N—C9—C10—F632.0 (3)
C3—C4—C5—N177.9 (2)C8—C9—C10—F6150.4 (2)
C7—C4—C5—N2.1 (3)N—C9—C10—F487.8 (3)
C3—C4—C5—C61.4 (3)C8—C9—C10—F489.8 (3)
C7—C4—C5—C6178.7 (2)N—C9—C10—F5152.1 (2)
C2—C1—C6—C50.7 (4)C8—C9—C10—F530.3 (3)
C2—C1—C6—C11179.4 (2)C1—C6—C11—F2123.2 (3)
N—C5—C6—C1178.5 (2)C5—C6—C11—F256.7 (3)
C4—C5—C6—C10.8 (3)C1—C6—C11—F3115.5 (3)
N—C5—C6—C111.6 (3)C5—C6—C11—F364.6 (3)
C4—C5—C6—C11179.1 (2)C1—C6—C11—F14.0 (3)
C12—O1—C7—C80.5 (4)C5—C6—C11—F1175.9 (2)
C12—O1—C7—C4178.6 (2)C7—O1—C12—C1385.0 (3)
C3—C4—C7—O12.6 (4)C14—O3—C13—O22.8 (5)
C5—C4—C7—O1177.5 (2)C14—O3—C13—C12176.8 (3)
C3—C4—C7—C8178.2 (2)O1—C12—C13—O28.6 (4)
C5—C4—C7—C81.7 (4)O1—C12—C13—O3171.1 (3)
O1—C7—C8—C9179.0 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F10.932.322.675 (3)102
C12—H12B···O2i0.972.543.448 (4)156
Symmetry codes: (i) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.972.543.448 (4)156
Symmetry codes: (i) x+1, y, z.
Acknowledgements top

This work was supported by reserach program JIT-N-201011 of the Jinling Institute of Technology. The authors thank the Center of Testing and Analysis, Nanjing University, for help with the data collection.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Lilienkampf, A., Mao, J. L., Wan, B. J., Wang, Y. H., Franzblau, S. J. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.