organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-1-ethyl-1H-1,3-benzo­diazole

aCollege of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaiyin 223003, Jiangsu, People's Republic of China
*Correspondence e-mail: dsl710221@163.com

(Received 4 January 2011; accepted 8 January 2011; online 15 January 2011)

In the title compound, C15H13BrN2, the benzimidazole group is almost planar, as indicated by the dihedral angle of 2.6 (3)° between the best planes through the benzene and imidazole rings. The best plane through the attached benzene makes an angle of 44.5 (2)° with the best plane through the benzimidazole system. C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For the synthesis, see: Kakimoto et al. (2008[Kakimoto, M., Ge, Z. Y., Hayakawa, T., Ando, S. & Ueda, M. (2008). Adv. Funct. Mater. A18, 584-590.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2

  • Mr = 301.18

  • Triclinic, [P \overline 1]

  • a = 9.0780 (18) Å

  • b = 9.1480 (18) Å

  • c = 9.2750 (19) Å

  • α = 76.72 (3)°

  • β = 78.44 (3)°

  • γ = 61.05 (3)°

  • V = 652.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.573, Tmax = 0.745

  • 2550 measured reflections

  • 2388 independent reflections

  • 1322 reflections with I > 2σ(I)

  • Rint = 0.068

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.111

  • S = 1.00

  • 2388 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the imidazolyl and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg2i 0.93 2.80 3.364 (2) 120
C13—H13ACg1i 0.93 2.93 3.429 (5) 115
Symmetry code: (i) -x+1, -y-2, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, (I), 2-(4-bromophenyl)-1-ethyl-1H-benzo[d]imidazole is an important intermediate organic intermediate which can be used for many fields such as OLED materials (Kakimoto et al., 2008). Here we report the crystal structure of (I). The molecular structure of (I) is shown in Fig. 1, the bond lengths and angles are within normal ranges (Allen et al., 1987).

In the benzimidazolyl group, the best planes through the phenyl ring and imidazolyl ring make an angle of 2.6 (2) °. Phenyl ring C8—C13 (connected with Br atom) makes an angle of 45.2 (3) ° and 43.3 (3) ° with phenyl ring C1—C6 and the imidazolyl ring, respectively.

In the crystal packing of (I), there were no classic intramolecular or intermolecular hydrogen bonds. Two C—H···ring interactions are present (Table 1, Fig.2).

Related literature top

For the synthetic procedure, see: Kakimoto et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Kakimoto et al., 2008). The crystals were obtained by dissolving (I) (0.5 g, 1.61 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, C—H = 0.96 Å and 0.97 Å for CH2 and CH3 groups, respectively, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram for (I) showing C—H···ring interactions.
2-(4-Bromophenyl)-1-ethyl-1H-1,3-benzodiazole top
Crystal data top
C15H13BrN2Z = 2
Mr = 301.18F(000) = 304
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0780 (18) ÅCell parameters from 25 reflections
b = 9.1480 (18) Åθ = 10–14°
c = 9.2750 (19) ŵ = 3.13 mm1
α = 76.72 (3)°T = 293 K
β = 78.44 (3)°Block, colourless
γ = 61.05 (3)°0.20 × 0.10 × 0.10 mm
V = 652.4 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 911
Tmin = 0.573, Tmax = 0.745l = 1011
2550 measured reflections3 standard reflections every 200 reflections
2388 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H13BrN2γ = 61.05 (3)°
Mr = 301.18V = 652.4 (2) Å3
Triclinic, P1Z = 2
a = 9.0780 (18) ÅMo Kα radiation
b = 9.1480 (18) ŵ = 3.13 mm1
c = 9.2750 (19) ÅT = 293 K
α = 76.72 (3)°0.20 × 0.10 × 0.10 mm
β = 78.44 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.068
Tmin = 0.573, Tmax = 0.7453 standard reflections every 200 reflections
2550 measured reflections intensity decay: 1%
2388 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2388 reflectionsΔρmin = 0.32 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.32320 (8)0.57697 (8)0.48665 (6)0.0929 (3)
N10.1726 (4)0.8039 (4)0.1030 (4)0.0524 (9)
C10.2103 (5)1.0699 (6)0.0928 (5)0.0519 (12)
N20.2453 (4)1.0570 (5)0.0412 (4)0.0486 (9)
C20.2144 (6)1.2057 (7)0.1407 (6)0.0698 (14)
H2A0.23841.30830.07840.084*
C30.1808 (7)1.1794 (9)0.2856 (7)0.0872 (19)
H3A0.18281.26620.32340.105*
C40.1437 (6)1.0237 (9)0.3760 (6)0.0827 (18)
H4A0.12481.01120.47410.099*
C50.1337 (5)0.8882 (7)0.3275 (5)0.0694 (14)
H5A0.10540.78470.38920.083*
C60.1682 (5)0.9129 (6)0.1804 (5)0.0524 (12)
C70.2206 (5)0.8950 (6)0.0272 (5)0.0461 (10)
C80.2462 (5)0.8272 (5)0.1432 (4)0.0439 (10)
C90.1320 (6)0.6632 (6)0.1667 (5)0.0538 (11)
H9A0.03820.60280.11310.065*
C100.1543 (6)0.5881 (6)0.2670 (5)0.0631 (13)
H10A0.07610.47830.28180.076*
C110.2940 (6)0.6771 (6)0.3456 (5)0.0552 (12)
C120.4095 (6)0.8382 (6)0.3237 (4)0.0563 (12)
H12A0.50340.89770.37730.068*
C130.3864 (5)0.9121 (6)0.2220 (4)0.0515 (11)
H13A0.46651.02090.20610.062*
C140.2964 (6)1.1962 (6)0.1673 (5)0.0588 (12)
H14A0.22181.24800.18420.071*
H14B0.28311.15050.25640.071*
C150.4772 (6)1.3301 (6)0.1421 (5)0.0673 (13)
H15A0.50411.41730.22740.101*
H15B0.55191.28020.12710.101*
H15C0.49051.37810.05560.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1271 (6)0.1207 (6)0.0706 (4)0.0799 (5)0.0003 (3)0.0424 (3)
N10.052 (2)0.057 (2)0.044 (2)0.018 (2)0.0118 (18)0.0083 (19)
C10.042 (3)0.064 (3)0.056 (3)0.022 (3)0.000 (2)0.030 (3)
N20.046 (2)0.055 (3)0.047 (2)0.0224 (19)0.0062 (17)0.0112 (19)
C20.057 (3)0.079 (4)0.085 (4)0.033 (3)0.001 (3)0.037 (3)
C30.069 (4)0.128 (6)0.098 (5)0.055 (4)0.006 (3)0.068 (4)
C40.057 (4)0.138 (6)0.072 (4)0.045 (4)0.006 (3)0.051 (4)
C50.050 (3)0.102 (4)0.051 (3)0.024 (3)0.006 (2)0.028 (3)
C60.036 (3)0.067 (4)0.052 (3)0.019 (2)0.005 (2)0.019 (3)
C70.040 (3)0.051 (3)0.047 (3)0.020 (2)0.000 (2)0.014 (2)
C80.045 (3)0.048 (3)0.037 (2)0.021 (2)0.002 (2)0.007 (2)
C90.057 (3)0.048 (3)0.051 (3)0.018 (3)0.013 (2)0.005 (2)
C100.075 (4)0.048 (3)0.066 (3)0.025 (3)0.001 (3)0.022 (2)
C110.068 (3)0.065 (3)0.046 (3)0.039 (3)0.001 (2)0.017 (2)
C120.050 (3)0.072 (4)0.047 (3)0.025 (3)0.005 (2)0.017 (2)
C130.045 (3)0.052 (3)0.053 (3)0.014 (2)0.006 (2)0.017 (2)
C140.065 (3)0.057 (3)0.058 (3)0.035 (3)0.000 (2)0.007 (3)
C150.060 (3)0.060 (3)0.075 (3)0.023 (3)0.005 (3)0.012 (3)
Geometric parameters (Å, º) top
Br—C111.883 (4)C8—C131.383 (5)
N1—C71.319 (5)C8—C91.388 (6)
N1—C61.374 (5)C9—C101.372 (6)
C1—N21.386 (5)C9—H9A0.9300
C1—C61.388 (6)C10—C111.379 (6)
C1—C21.394 (6)C10—H10A0.9300
N2—C71.365 (5)C11—C121.367 (6)
N2—C141.472 (5)C12—C131.379 (5)
C2—C31.379 (7)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.394 (8)C14—C151.510 (6)
C3—H3A0.9300C14—H14A0.9700
C4—C51.370 (7)C14—H14B0.9700
C4—H4A0.9300C15—H15A0.9600
C5—C61.404 (6)C15—H15B0.9600
C5—H5A0.9300C15—H15C0.9600
C7—C81.464 (5)
C7—N1—C6104.7 (4)C10—C9—C8121.6 (4)
N2—C1—C6105.7 (4)C10—C9—H9A119.2
N2—C1—C2130.8 (5)C8—C9—H9A119.2
C6—C1—C2123.5 (4)C9—C10—C11119.2 (4)
C7—N2—C1105.7 (4)C9—C10—H10A120.4
C7—N2—C14130.3 (3)C11—C10—H10A120.4
C1—N2—C14123.9 (4)C12—C11—C10120.5 (4)
C3—C2—C1116.3 (5)C12—C11—Br119.9 (4)
C3—C2—H2A121.9C10—C11—Br119.6 (4)
C1—C2—H2A121.9C11—C12—C13119.7 (4)
C2—C3—C4120.6 (5)C11—C12—H12A120.1
C2—C3—H3A119.7C13—C12—H12A120.1
C4—C3—H3A119.7C12—C13—C8121.1 (4)
C5—C4—C3123.2 (5)C12—C13—H13A119.4
C5—C4—H4A118.4C8—C13—H13A119.4
C3—C4—H4A118.4N2—C14—C15112.8 (4)
C4—C5—C6117.0 (5)N2—C14—H14A109.0
C4—C5—H5A121.5C15—C14—H14A109.0
C6—C5—H5A121.5N2—C14—H14B109.0
N1—C6—C1110.4 (4)C15—C14—H14B109.0
N1—C6—C5130.2 (5)H14A—C14—H14B107.8
C1—C6—C5119.4 (4)C14—C15—H15A109.5
N1—C7—N2113.5 (4)C14—C15—H15B109.5
N1—C7—C8122.5 (4)H15A—C15—H15B109.5
N2—C7—C8124.1 (4)C14—C15—H15C109.5
C13—C8—C9117.8 (4)H15A—C15—H15C109.5
C13—C8—C7123.5 (4)H15B—C15—H15C109.5
C9—C8—C7118.5 (4)
C6—C1—N2—C70.7 (4)C14—N2—C7—N1179.2 (4)
C2—C1—N2—C7179.9 (4)C1—N2—C7—C8179.0 (4)
C6—C1—N2—C14179.8 (4)C14—N2—C7—C81.5 (7)
C2—C1—N2—C140.3 (7)N1—C7—C8—C13133.5 (4)
N2—C1—C2—C3176.6 (4)N2—C7—C8—C1345.7 (6)
C6—C1—C2—C32.7 (6)N1—C7—C8—C940.5 (6)
C1—C2—C3—C40.6 (7)N2—C7—C8—C9140.3 (4)
C2—C3—C4—C51.8 (8)C13—C8—C9—C101.5 (6)
C3—C4—C5—C62.0 (7)C7—C8—C9—C10175.9 (4)
C7—N1—C6—C11.5 (5)C8—C9—C10—C110.5 (7)
C7—N1—C6—C5176.5 (4)C9—C10—C11—C120.2 (7)
N2—C1—C6—N11.4 (5)C9—C10—C11—Br178.6 (3)
C2—C1—C6—N1179.1 (4)C10—C11—C12—C130.1 (7)
N2—C1—C6—C5176.9 (3)Br—C11—C12—C13179.0 (3)
C2—C1—C6—C52.6 (6)C11—C12—C13—C81.2 (6)
C4—C5—C6—N1178.1 (4)C9—C8—C13—C121.9 (6)
C4—C5—C6—C10.2 (6)C7—C8—C13—C12175.9 (4)
C6—N1—C7—N21.1 (5)C7—N2—C14—C15106.0 (5)
C6—N1—C7—C8178.2 (4)C1—N2—C14—C1574.6 (5)
C1—N2—C7—N10.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the imidazolyl and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg2i0.932.803.364 (2)120
C13—H13A···Cg1i0.932.933.429 (5)115
Symmetry code: (i) x+1, y2, z.

Experimental details

Crystal data
Chemical formulaC15H13BrN2
Mr301.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0780 (18), 9.1480 (18), 9.2750 (19)
α, β, γ (°)76.72 (3), 78.44 (3), 61.05 (3)
V3)652.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.573, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
2550, 2388, 1322
Rint0.068
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.111, 1.00
No. of reflections2388
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the imidazolyl and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg2i0.932.803.364 (2)120
C13—H13A···Cg1i0.932.933.429 (5)115
Symmetry code: (i) x+1, y2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection. We also thank the Contract grant sponsors, the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045), for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKakimoto, M., Ge, Z. Y., Hayakawa, T., Ando, S. & Ueda, M. (2008). Adv. Funct. Mater. A18, 584–590.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds