inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

$[AI(H_2O)_6][Cr(OH)_6Mo_6O_{18}] \cdot 10H_2O$

Bao Li, Ling Ye and Li-Xin Wu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: wulx@jlu.edu.cn

Received 29 November 2010; accepted 23 December 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (Al–O) = 0.004 Å; R factor = 0.033; wR factor = 0.093; data-to-parameter ratio = 17.5.

The title compound, $[Al(H_2O)_6][Cr(OH)_6Mo_6O_{18}]\cdot 10H_2O$, hexaaquaaluminium hexahydroxidooctadecaoxidomolybdochromate(III) decahydrate, crystallizes isotypically with its gallium analogue $[Ga(H_2O)_6][Cr(OH)_6Mo_6O_{18}]$.10H₂O. In the structure of the title compound, both the $[Al(H_2O)_6]^{3+}$ cation and the Anderson-type $[Cr(OH)_6Mo_6O_{18}]^{3-}$ anion lie on centres of inversion. The anion is composed of seven edgesharing octahedra, six of which are MoO₆ octahedra that are arranged hexagonally around the central Cr(OH)₆ octahedron. The anions are linked to each other by $O-H \cdots O$ hydrogen bonds into infinite chains along [100]. These chains are further connected with the $[Al(H_2O)_6]^{3+}$ cations through $O-H \cdots O$ hydrogen bonds into sheets parallel to (011). O-H...O hydrogen bonds involving all the lattice water molecules finally link the sheets into a three-dimensional network.

Related literature

For background literature on polyoxometalates, see: An *et al.* (2005); Shivaiah *et al.* (2003). The isotypic gallium analogue was reported by Kaziev *et al.* (2002).

Experimental

Crystal data	
$ \begin{bmatrix} AI(H_2O)_6][Cr(OH)_6Mo_6O_{18}] \\ -10H_2O \\ M_r = 1332.92 \\ Triclinic, P\overline{1} \\ a = 6.809 (5) \text{ Å} \\ b = 11.267 (7) \text{ Å} \\ c = 11.596 (9) \text{ Å} \\ \alpha = 101.26 (3)^{\circ} \\ \end{bmatrix} $	$\beta = 97.02 (3)^{\circ}$ $\gamma = 101.81 (3)^{\circ}$ $V = 841.7 (10) Å^{3}$ Z = 1 Mo K\alpha radiation $\mu = 2.63 \text{ mm}^{-1}$ T = 290 K $0.12 \times 0.12 \times 0.11 \text{ mm}$
Data collection	
Disala D AVIC DADID	9257 massing d noffections

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.745, T_{max} = 0.770$ 8257 measured reflections 3801 independent reflections 3346 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.093$ S = 1.103801 reflections 217 parameters

24 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.89$ e Å^{-3} $\Delta \rho_{min} = -0.86$ e Å^{-3}

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$OH3-H3\cdots OT1^{i}$	0.85	1.85	2.681 (4)	167
$OH1-H1\cdots OB2^{i}$	0.85	2.10	2.944 (4)	172
OH2−H2···OW5 ⁱⁱ	0.85	1.82	2.665 (5)	178
OW3−H8···OT4 ⁱⁱⁱ	0.85	1.83	2.628 (5)	156
OW3−H9···OW7 ⁱⁱⁱ	0.85	1.81	2.632 (5)	163
$OW1-H4 \cdot \cdot \cdot OW7$	0.85	2.01	2.730 (5)	142
$OW1-H5\cdots OW4^{iv}$	0.85	1.74	2.577 (5)	167
$OW2-H6\cdots OB3^{v}$	0.85	1.72	2.559 (4)	171
$OW2-H7\cdots OW6$	0.85	1.88	2.728 (5)	178
$OW4-H10\cdots OB1^{vi}$	0.85	1.94	2.737 (5)	156
$OW5-H12\cdots OT1^{vii}$	0.86	2.15	3.002 (6)	179
OW5−H13···OW6 ^{viii}	0.85	1.99	2.842 (6)	180
$OW6-H14\cdots OW5^{v}$	0.85	2.04	2.800 (6)	149
$OW6-H15\cdots OT3^{iii}$	0.85	2.45	3.091 (6)	133
$OW7-H16\cdots OT3^{iii}$	0.85	2.13	2.878 (5)	146
OW7−H17···OW8	0.85	1.98	2.759 (5)	152
$OW8-H18\cdots OT1^{ix}$	0.85	2.19	2.902 (5)	141
$OW8-H18\cdots OT6^{x}$	0.85	2.62	3.241 (5)	131
$OW8-H19\cdots OW8^{xi}$	0.85	2.56	3.283 (6)	144

 $\begin{array}{l} \text{Symmetry codes: (i) } -x+1, -y, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; \\ (iv) \ x-1, y, z; (v) \ -x, -y+1, -z+1; (vi) \ x+1, y, z+1; (vii) \ -x+1, -y+1, -z; \\ (viii) \ x, y, z-1; (ix) \ x, y, z+1; (x) \ -x, -y, -z+1; (xi) \ -x+1, -y, -z+1. \end{array}$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the National Basic Research Program of China (2007CB808003) and the National Natural Science Foundation of China (20973082, 20921003, 20703019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2434).

References

An, H. Y., Li, Y. G., Wang, E. B., Xiao, D. R., Sun, C. Y. & Xu, L. (2005). Inorg. Chem. 44, 6062–6070.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kaziev, G. Z., Qiguones, S. O., Bel'skii, V. K., Zavodnik, V. E., Osminkina, I. V. & de Ita, A. (2002). *Russ. J. Inorg. Chem.* 47, 335–340.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shivaiah, V., Nagaraju, M. & Das, S. K. (2003). Inorg. Chem. 42, 6604–6606.Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2011). E67, i8 [doi:10.1107/S1600536810053936]

$[AI(H_2O)_6][Cr(OH)_6Mo_6O_{18}]{\boldsymbol{\cdot}}10H_2O$

Bao Li, Ling Ye and Li-Xin Wu

S1. Comment

Anderson-type polyoxometalate (POM) anions are frequently used as building blocks to construct extended solid frameworks (An *et al.*, 2005; Shivaiah *et al.*, 2003). As a part of our ongoing study on POMs, we report here the crystal structure of the title compound, $[Al(H_2O)_6][Cr(OH)_6Mo_6O_{18}].10H_2O$.

The crystal structure of the title compound (Fig. 1) consists of $[Al(H_2O)_6]^{3+}$ cations and Anderson-type $[Cr(OH)_6Mo_6O_{18}]^{3-}$ anions, both with $\overline{1}$ symmetry. The $[Cr(OH)_6]$ octahedron lies on the center of six surrounding $[MoO_6]$ octahedra, all linked through common edges. According to different coordination environments, there are three kinds of O atoms in the anion. The first involves twelve terminal O atoms (labelled OT*x*) that only bind to one Mo atom with distances ranging from 1.691 (4) Å to 1.721 (3) Å. The second type involves six bridging O atoms (OB*x*) shared by two Mo atoms with distances ranging from 1.927 (3) Å to 1.951 (3) Å. The third type involves six O atoms (OH*x*) located between the Mo and Cr atoms with Mo—OH bond lengths ranging from 2.252 (3) Å to 2.314 (3) Å. All these bond lengths and corresponding angles are in the normal ranges (An *et al.*, 2005).

Abundant hydrogen bonding exist in the title structure (Table 1). The OH groups of the POM anion are involved in forming O—H···O hydrogen bonds to adjacent anions and link the $[Cr(OH)_6Mo_6O_{18}]^{3-}$ anions into infinite chains along [100]. The chains are further connected with $[Al(H_2O)_6]^{3+}$ octahedra through O—H···O hydrogen bonds into sheets lying parallel to $(01\overline{1})$. The O—H···O hydrogen bonds involving all the lattice water molecules finally link the sheets into a three-dimensional network (Fig. 2).

It should be noted that the title compound is isotypic with its gallium analogue $[Ga(H_2O)_6][Cr(OH)_6Mo_6O_{18}].10H_2O$ described several years ago (Kaziev, *et al.* 2002). In the latter structure, the Cr³⁺ and Ga³⁺ sites show occupational disorder due to their very similar ionic radius, while such a disorder is not observed in the title compound.

S2. Experimental

CrCl₃.6H₂O (0.532 g, 2 mmol) and Na₂MoO₄.2H₂O (3.629 g, 15 mmol) were dissolved in water (30 ml); ice acetic acid was dropped into the solution until it became clear. The resultant solution was heated for 1 h under stirring and AlCl₃ (0.267 g, 2 mmol) was added subsequently. The mixture was heated for half an hour and cooled to room temperature. Colorless single crystals were obtained three weeks later after partial evaporation of water.

S3. Refinement

All H atoms were located from difference Fourier map and treated in the riding mode approximation on their parent atoms, with O—H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The $[Al(H_2O)_6]^{3+}$ cation and the Anderson-type anion as well as the five independent lattice water molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -*x*, 1 - *y*, 1 - *z*; (B)-*x*, -*y*, -*z*.]

Figure 2

. .

Crystal packing diagram of the title compound, showing the three-dimensional network between the molecular entities through hydrogen bonding (dashed lines).

hexaaquaaluminium hexahydroxidooctadecaoxidomolybdochromate(III) decahydrate,

Crystal data	
[Al(H ₂ O) ₆][Cr(OH) ₆ Mo ₆ O ₁₈]·10H ₂ O $M_r = 1332.92$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.809 (5) Å b = 11.267 (7) Å c = 11.596 (9) Å a = 101.26 (3)° $\beta = 97.02$ (3)° $\gamma = 101.81$ (3)° V = 841.7 (10) Å ³	Z = 1 F(000) = 647 $D_x = 2.630 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7543 reflections $\theta = 3.2-27.1^{\circ}$ $\mu = 2.63 \text{ mm}^{-1}$ T = 290 K Block, colorless $0.12 \times 0.12 \times 0.11 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.745, T_{\max} = 0.770$	8257 measured reflections 3801 independent reflections 3346 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -7 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.10	H-atom parameters constrained
3801 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2 + 2.719P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
24 restraints	$(\Delta/\sigma)_{\rm max} = 0.009$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.89 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.86 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
All	0.0000	0.5000	0.5000	0.0162 (4)
Crl	0.0000	0.0000	0.0000	0.01424 (19)
Mo1	0.37029 (5)	0.16663 (3)	-0.10502 (3)	0.01629 (11)
Mo2	0.33617 (6)	0.24360 (3)	0.17992 (3)	0.01870 (11)
Mo3	-0.02648 (6)	0.07285 (3)	0.29050 (3)	0.01802 (11)
OH1	0.2099 (4)	-0.0332 (3)	-0.0983 (3)	0.0156 (6)
H1	0.2955	-0.0782	-0.0941	0.023*
OB1	0.1450 (5)	0.1055 (3)	-0.2357 (3)	0.0203 (6)
OT1	0.5602 (5)	0.1125 (3)	-0.1683 (3)	0.0251 (7)
OT2	0.4158 (5)	0.3199 (3)	-0.1095 (3)	0.0287 (8)
OH2	0.1174 (4)	0.1756 (3)	0.0024 (3)	0.0159 (6)
H2	0.0530	0.2258	-0.0217	0.024*
OB2	0.4843 (5)	0.1784 (3)	0.0594 (3)	0.0209 (6)
OT3	0.3656 (6)	0.3945 (3)	0.1671 (3)	0.0321 (8)
OT4	0.5053 (6)	0.2483 (4)	0.3027 (3)	0.0365 (9)
OB3	0.0878 (5)	0.2295 (3)	0.2494 (3)	0.0202 (6)
OH3	0.1830 (5)	0.0372 (3)	0.1527 (3)	0.0166 (6)
Н3	0.2705	-0.0068	0.1480	0.025*
OT5	0.1586 (6)	0.0662 (3)	0.3999 (3)	0.0315 (8)
OT6	-0.2117 (6)	0.1163 (4)	0.3617 (3)	0.0334 (8)
OW1	0.1050 (5)	0.3690 (3)	0.5388 (3)	0.0242 (7)
H4	0.2073	0.3992	0.5942	0.036*
Н5	0.0411	0.3152	0.5715	0.036*
OW2	0.0105 (5)	0.5686 (3)	0.6627 (3)	0.0234 (7)

H6	-0.0143	0.6394	0.6869	0.035*	
H7	0.0689	0.5534	0.7255	0.035*	
OW3	0.2655 (5)	0.5935 (3)	0.5085 (3)	0.0254 (7)	
H8	0.3070	0.6445	0.5758	0.038*	
H9	0.3240	0.6029	0.4491	0.038*	
OW4	0.9017 (6)	0.2342 (3)	0.6599 (4)	0.0379 (9)	
H10	0.9862	0.2141	0.7084	0.057*	
H11	0.8043	0.2487	0.6955	0.057*	
OW5	0.0885 (6)	0.6667 (3)	0.0685 (4)	0.0361 (9)	
H12	0.1879	0.7302	0.0967	0.054*	
H13	0.1180	0.6225	0.0079	0.054*	
OW6	0.1882 (6)	0.5186 (4)	0.8662 (4)	0.0378 (9)	
H14	0.1337	0.4753	0.9112	0.057*	
H15	0.3078	0.5567	0.9018	0.057*	
OW7	0.4894 (4)	0.3814 (3)	0.6484 (3)	0.0359 (9)	
H16	0.5251	0.4239	0.7199	0.054*	
H17	0.4701	0.3052	0.6506	0.054*	
OW8	0.4860 (4)	0.1318 (3)	0.5850 (3)	0.0407 (9)	
H18	0.4573	0.0970	0.6416	0.061*	
H19	0.5475	0.0869	0.5416	0.061*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
A11	0.0168 (9)	0.0139 (8)	0.0166 (9)	0.0037 (6)	0.0007 (7)	0.0011 (7)
Cr1	0.0137 (5)	0.0128 (4)	0.0148 (4)	0.0034 (3)	0.0000 (4)	0.0008 (3)
Mo1	0.01433 (19)	0.01556 (18)	0.0194 (2)	0.00386 (13)	0.00296 (14)	0.00448 (14)
Mo2	0.0168 (2)	0.01554 (18)	0.0188 (2)	0.00120 (13)	-0.00073 (14)	-0.00287 (14)
Mo3	0.0201 (2)	0.01879 (19)	0.01451 (19)	0.00612 (14)	0.00132 (14)	0.00159 (14)
OH1	0.0144 (14)	0.0151 (13)	0.0187 (15)	0.0084 (11)	0.0020 (12)	0.0026 (11)
OB1	0.0223 (16)	0.0205 (14)	0.0188 (16)	0.0051 (12)	0.0015 (13)	0.0073 (12)
OT1	0.0228 (17)	0.0310 (17)	0.0256 (18)	0.0124 (13)	0.0065 (14)	0.0086 (14)
OT2	0.0266 (19)	0.0228 (16)	0.037 (2)	0.0030 (13)	0.0062 (15)	0.0107 (15)
OH2	0.0146 (14)	0.0126 (13)	0.0205 (15)	0.0038 (11)	0.0020 (12)	0.0040 (11)
OB2	0.0183 (16)	0.0221 (15)	0.0199 (16)	0.0041 (12)	0.0001 (13)	0.0017 (12)
OT3	0.036 (2)	0.0178 (15)	0.038 (2)	0.0020 (14)	0.0096 (17)	-0.0011 (14)
OT4	0.030 (2)	0.043 (2)	0.0262 (19)	0.0073 (16)	-0.0073 (16)	-0.0069 (16)
OB3	0.0233 (17)	0.0163 (14)	0.0188 (15)	0.0053 (12)	0.0018 (13)	-0.0007 (12)
OH3	0.0175 (15)	0.0166 (13)	0.0149 (14)	0.0069 (11)	-0.0005 (12)	0.0005 (11)
OT5	0.030(2)	0.0379 (19)	0.0242 (18)	0.0091 (15)	-0.0051 (15)	0.0070 (15)
OT6	0.036 (2)	0.038 (2)	0.032 (2)	0.0184 (16)	0.0136 (17)	0.0051 (16)
OW1	0.0248 (18)	0.0189 (14)	0.0286 (18)	0.0078 (13)	-0.0001 (14)	0.0047 (13)
OW2	0.0310 (19)	0.0222 (15)	0.0169 (15)	0.0106 (13)	0.0017 (13)	0.0008 (12)
OW3	0.0215 (17)	0.0267 (16)	0.0216 (16)	-0.0024 (13)	0.0032 (13)	-0.0013 (13)
OW4	0.034 (2)	0.0346 (19)	0.050(2)	0.0118 (16)	-0.0007 (18)	0.0218 (18)
OW5	0.035 (2)	0.0285 (18)	0.044 (2)	0.0106 (15)	0.0019 (18)	0.0068 (16)
OW6	0.036 (2)	0.044 (2)	0.039 (2)	0.0160 (17)	0.0056 (18)	0.0174 (18)
OW7	0.030 (2)	0.048 (2)	0.030 (2)	0.0101 (17)	0.0063 (16)	0.0080 (17)

OW8	0.036 (2)	0.048 (2)	0.035 (2)	0.0049 (18)	-0.0012 (18)	0.0113 (18)
Geomet	ric parameters (.	(Å, °)				
All—C	W1 ⁱ	1.872 (3)		Mo3—OB1 ⁱⁱ		1.951 (3)
All—C	W1	1.872 (3)		Mo3—OB3		1.951 (3)
Al1—C	W3 ⁱ	1.877 (3)		Мо3—ОН3		2.300 (3)
Al1—C	W3	1.877 (3)		Mo3—OH1 ⁱⁱ		2.330 (3)
Al1—C	W2	1.881 (3)		OH1—Mo3 ⁱⁱ		2.330 (3)
Al1—C	W2 ⁱ	1.881 (3)		OH1—H1		0.8500
Cr1—C	H3 ⁱⁱ	1.954 (3)		OB1—Mo3 ⁱⁱ		1.951 (3)
Cr1—C	Н3	1.954 (3)		OH2—H2		0.8499
Cr1—C	H2	1.970 (3)		ОН3—Н3		0.8501
Cr1—C	H2 ⁱⁱ	1.970 (3)		OW1—H4		0.8500
Cr1—C	H1 ⁱⁱ	1.983 (3)		OW1—H5		0.8500
Cr1—C)H1	1.983 (3)		OW2—H6		0.8501
Mo1-0	OT2	1.703 (3)		OW2—H7		0.8499
Mo1-0	OT1	1.721 (3)		OW3—H8		0.8500
Mo1-0	OB1	1.927 (3)		OW3—H9		0.8500
Mo1—	OB2	1.937 (4)		OW4—H10		0.8500
Mo1—	OH2	2.252 (3)		OW4—H11		0.8500
Mo1-0	OH1	2.314 (3)		OW5—H12		0.8559
Mo2—	OT4	1.703 (4)		OW5—H13		0.8496
Mo2—	OT3	1.709 (4)		OW6—H14		0.8500
Mo2—	OB2	1.939 (3)		OW6—H15		0.8500
Mo2—	OB3	1.951 (3)		OW7—H16		0.8509
Mo2—	OH2	2.283 (3)		OW7—H17		0.8480
Mo2—	OH3	2.288 (3)		OW8—H18		0.8499
Mo3—	OT6	1.691 (4)		OW8—H19		0.8500
Mo3—	OT5	1.699 (4)				
OW1 ⁱ —	-All—OW1	180.000 (1)	OT4—Mo2—OH3	3	94.98 (16)
OW1 ⁱ -	-Al1—OW3 ⁱ	89.98 (16)	OT3—Mo2—OH3	3	158.26 (16)
OW1—	Al1—OW3 ⁱ	90.02 (16)	OB2—Mo2—OH3	3	82.20 (13)
OW1 ⁱ -	-All—OW3	90.02 (16)	OB3—Mo2—OH3	3	71.27 (12)
OW1—	All—OW3	89.98 (16)	OH2—Mo2—OH3	3	69.73 (11)
OW3 ⁱ —	-All—OW3	180.0 (2)		OT6-Mo3-OT5	;	105.4 (2)
OW1 ⁱ —	-All—OW2	89.59 (15)	OT6-Mo3-OB1	ii	99.75 (17)
OW1—	All—OW2	90.41 (15)	OT5-Mo3-OB1	ii	97.91 (16)
OW3 ⁱ —	-Al1—OW2	90.13 (15)	OT6-Mo3-OB3	3	99.14 (17)
OW3—	All—OW2	89.87 (15)	OT5—Mo3—OB3	3	102.04 (17)
OW1 ⁱ —	-Al1-OW2 ⁱ	90.41 (15)	OB1 ⁱⁱ —Mo3—OB	3	147.66 (13)
OW1—	Al1—OW2 ⁱ	89.59 (15)	OT6—Mo3—OH3	3	163.68 (15)
OW3 ⁱ —	-Al1-OW2 ⁱ	89.87 (15)	OT5—Mo3—OH3	3	89.62 (16)
OW3—	Al1—OW2 ⁱ	90.13 (15)	OB1 ⁱⁱ —Mo3—OH	[3	84.03 (12)
OW2—	Al1—OW2 ⁱ	180.000 (1)	OB3—Mo3—OH3	3	71.00 (12)
OH3 ⁱⁱ —	-Cr1—OH3	180.00 (1	8)	OT6—Mo3—OH1	Lii	95.90 (16)
OH3 ⁱⁱ —	-Cr1—OH2	96.53 (13)	OT5-Mo3-OH1	lii	157.46 (14)

supporting information

OH3—Cr1—OH2	83.47 (13)	OB1 ⁱⁱ —Mo3—OH1 ⁱⁱ	70.90 (12)
OH3 ⁱⁱ —Cr1—OH2 ⁱⁱ	83.47 (13)	OB3—Mo3—OH1 ⁱⁱ	81.26 (13)
OH3—Cr1—OH2 ⁱⁱ	96.53 (13)	OH3—Mo3—OH1 ⁱⁱ	70.18 (12)
OH2—Cr1—OH2 ⁱⁱ	180.00 (18)	Cr1—OH1—Mo1	101.22 (12)
OH3 ⁱⁱ —Cr1—OH1 ⁱⁱ	94.97 (14)	Cr1—OH1—Mo3 ⁱⁱ	101.37 (13)
OH3—Cr1—OH1 ⁱⁱ	85.03 (14)	Mo1—OH1—Mo3 ⁱⁱ	92.79 (11)
OH2—Cr1—OH1 ⁱⁱ	95.90 (12)	Cr1—OH1—H1	131.8
OH2 ⁱⁱ —Cr1—OH1 ⁱⁱ	84.10 (12)	Mo1—OH1—H1	110.7
OH3 ⁱⁱ —Cr1—OH1	85.03 (14)	Mo3 ⁱⁱ —OH1—H1	111.9
OH3—Cr1—OH1	94.97 (14)	Mo1—OB1—Mo3 ⁱⁱ	120.22 (16)
OH2—Cr1—OH1	84.10 (12)	Cr1—OH2—Mo1	103.79 (12)
OH2 ⁱⁱ —Cr1—OH1	95.90 (12)	Cr1—OH2—Mo2	103.22 (13)
OH1 ⁱⁱ —Cr1—OH1	180.00 (15)	Mo1—OH2—Mo2	93.30 (12)
OT2-Mo1-OT1	104.94 (17)	Cr1—OH2—H2	125.8
OT2-Mo1-OB1	97.87 (16)	Mo1—OH2—H2	106.7
OT1—Mo1—OB1	101.08 (16)	Mo2—OH2—H2	118.4
OT2—Mo1—OB2	100.85 (16)	Mo1—OB2—Mo2	116.61 (16)
OT1—Mo1—OB2	96.87 (16)	Mo2—OB3—Mo3	118.42 (15)
OB1—Mo1—OB2	149.69 (14)	Cr1—OH3—Mo2	103.55 (13)
OT2—Mo1—OH2	94.45 (14)	Cr1—OH3—Mo3	103.34 (14)
OT1—Mo1—OH2	159.55 (14)	Mo2—OH3—Mo3	93.88 (11)
OB1—Mo1—OH2	82.26 (14)	Cr1—OH3—H3	110.0
OB2—Mo1—OH2	72.74 (13)	Mo2—OH3—H3	110.7
OT2—Mo1—OH1	162.67 (14)	Мо3—ОН3—Н3	131.6
OT1—Mo1—OH1	90.85 (14)	Al1—OW1—H4	108.5
OB1—Mo1—OH1	71.64 (12)	Al1—OW1—H5	122.9
OB2—Mo1—OH1	83.95 (13)	H4—OW1—H5	97.7
OH2—Mo1—OH1	70.89 (11)	Al1—OW2—H6	122.0
OT4—Mo2—OT3	105.5 (2)	Al1—OW2—H7	131.7
OT4—Mo2—OB2	98.10 (17)	H6—OW2—H7	103.9
OT3—Mo2—OB2	101.59 (16)	Al1—OW3—H8	111.0
OT4—Mo2—OB3	99.29 (18)	Al1—OW3—H9	125.4
OT3—Mo2—OB3	97.85 (16)	H8—OW3—H9	120.8
OB2—Mo2—OB3	149.30 (13)	H10—OW4—H11	107.7
OT4—Mo2—OH2	162.45 (15)	H12—OW5—H13	108.5
OT3—Mo2—OH2	90.88 (16)	H14—OW6—H15	107.7
OB2—Mo2—OH2	72.01 (13)	H16—OW7—H17	107.5
OB3—Mo2—OH2	84.24 (13)	H18—OW8—H19	107.7

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H…A
O <i>H</i> 3—H3…O <i>T</i> 1 ⁱⁱⁱ	0.85	1.85	2.681 (4)	167
OH1—H1···OB2 ⁱⁱⁱ	0.85	2.10	2.944 (4)	172
OH2—H2···OW5 ^{iv}	0.85	1.82	2.665 (5)	178
O <i>W</i> 3—H8⋯O <i>T</i> 4 ^v	0.85	1.83	2.628 (5)	156

supporting information

O <i>W</i> 3—H9····O <i>W</i> 7 ^v	0.85	1.81	2.632 (5)	163	
O <i>W</i> 1—H4…O <i>W</i> 7	0.85	2.01	2.730 (5)	142	
OW1—H5⋯OW4 ^{vi}	0.85	1.74	2.577 (5)	167	
OW2—H6…OB3 ⁱ	0.85	1.72	2.559 (4)	171	
OW2—H7…OW6	0.85	1.88	2.728 (5)	178	
OW4—H10…OB1 ^{vii}	0.85	1.94	2.737 (5)	156	
OW5—H12···OT1 ^{viii}	0.86	2.15	3.002 (6)	179	
OW5—H13····OW6 ^{ix}	0.85	1.99	2.842 (6)	180	
OW6—H14…OW5 ⁱ	0.85	2.04	2.800 (6)	149	
OW6—H15…OT3 ^v	0.85	2.45	3.091 (6)	133	
О <i>W</i> 7—H16…O <i>T</i> 3 ^v	0.85	2.13	2.878 (5)	146	
O <i>W</i> 7—H17…O <i>W</i> 8	0.85	1.98	2.759 (5)	152	
OW8—H18…OT1 ^x	0.85	2.19	2.902 (5)	141	
OW8—H18…OT6 ^{xi}	0.85	2.62	3.241 (5)	131	
OW8—H19…OW8 ^{xii}	0.85	2.56	3.283 (6)	144	

Symmetry codes: (i) -x, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z; (vii) x+1, y, z+1; (viii) -x+1, -y+1, -z; (ix) x, y, z-1; (x) x, y, z+1; (xi) -x, -y, -z+1; (xii) -x+1, -y, -z+1.