inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Al(H2O)6][Cr(OH)6Mo6O18]·10H2O

aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wulx@jlu.edu.cn

(Received 29 November 2010; accepted 23 December 2010; online 12 January 2011)

The title compound, [Al(H2O)6][Cr(OH)6Mo6O18]·10H2O, hexa­aqua­aluminium hexa­hydroxidoocta­deca­oxido­molybdo­chromate(III) deca­hydrate, crystallizes isotypically with its gallium analogue [Ga(H2O)6][Cr(OH)6Mo6O18].10H2O. In the structure of the title compound, both the [Al(H2O)6]3+ cation and the Anderson-type [Cr(OH)6Mo6O18]3− anion lie on centres of inversion. The anion is composed of seven edge-sharing octa­hedra, six of which are MoO6 octa­hedra that are arranged hexa­gonally around the central Cr(OH)6 octa­hedron. The anions are linked to each other by O—H⋯O hydrogen bonds into infinite chains along [100]. These chains are further connected with the [Al(H2O)6]3+ cations through O—H⋯O hydrogen bonds into sheets parallel to (01[\overline{1}]). O—H⋯O hydrogen bonds involving all the lattice water mol­ecules finally link the sheets into a three-dimensional network.

Related literature

For background literature on polyoxometalates, see: An et al. (2005[An, H. Y., Li, Y. G., Wang, E. B., Xiao, D. R., Sun, C. Y. & Xu, L. (2005). Inorg. Chem. 44, 6062-6070.]); Shivaiah et al. (2003[Shivaiah, V., Nagaraju, M. & Das, S. K. (2003). Inorg. Chem. 42, 6604-6606.]). The isotypic gallium analogue was reported by Kaziev et al. (2002[Kaziev, G. Z., Qiguones, S. O., Bel'skii, V. K., Zavodnik, V. E., Osminkina, I. V. & de Ita, A. (2002). Russ. J. Inorg. Chem. 47, 335-340.]).

Experimental

Crystal data
  • [Al(H2O)6][Cr(OH)6Mo6O18]·10H2O

  • Mr = 1332.92

  • Triclinic, [P \overline 1]

  • a = 6.809 (5) Å

  • b = 11.267 (7) Å

  • c = 11.596 (9) Å

  • α = 101.26 (3)°

  • β = 97.02 (3)°

  • γ = 101.81 (3)°

  • V = 841.7 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 290 K

  • 0.12 × 0.12 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.745, Tmax = 0.770

  • 8257 measured reflections

  • 3801 independent reflections

  • 3346 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.10

  • 3801 reflections

  • 217 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OH3—H3⋯OT1i 0.85 1.85 2.681 (4) 167
OH1—H1⋯OB2i 0.85 2.10 2.944 (4) 172
OH2—H2⋯OW5ii 0.85 1.82 2.665 (5) 178
OW3—H8⋯OT4iii 0.85 1.83 2.628 (5) 156
OW3—H9⋯OW7iii 0.85 1.81 2.632 (5) 163
OW1—H4⋯OW7 0.85 2.01 2.730 (5) 142
OW1—H5⋯OW4iv 0.85 1.74 2.577 (5) 167
OW2—H6⋯OB3v 0.85 1.72 2.559 (4) 171
OW2—H7⋯OW6 0.85 1.88 2.728 (5) 178
OW4—H10⋯OB1vi 0.85 1.94 2.737 (5) 156
OW5—H12⋯OT1vii 0.86 2.15 3.002 (6) 179
OW5—H13⋯OW6viii 0.85 1.99 2.842 (6) 180
OW6—H14⋯OW5v 0.85 2.04 2.800 (6) 149
OW6—H15⋯OT3iii 0.85 2.45 3.091 (6) 133
OW7—H16⋯OT3iii 0.85 2.13 2.878 (5) 146
OW7—H17⋯OW8 0.85 1.98 2.759 (5) 152
OW8—H18⋯OT1ix 0.85 2.19 2.902 (5) 141
OW8—H18⋯OT6x 0.85 2.62 3.241 (5) 131
OW8—H19⋯OW8xi 0.85 2.56 3.283 (6) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) -x, -y+1, -z+1; (vi) x+1, y, z+1; (vii) -x+1, -y+1, -z; (viii) x, y, z-1; (ix) x, y, z+1; (x) -x, -y, -z+1; (xi) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anderson-type polyoxometalate (POM) anions are frequently used as building blocks to construct extended solid frameworks (An et al., 2005; Shivaiah et al., 2003). As a part of our ongoing study on POMs, we report here the crystal structure of the title compound, [Al(H2O)6][Cr(OH)6Mo6O18].10H2O.

The crystal structure of the title compound (Fig. 1) consists of [Al(H2O)6]3+ cations and Anderson-type [Cr(OH)6Mo6O18]3- anions, both with 1 symmetry. The [Cr(OH)6] octahedron lies on the center of six surrounding [MoO6] octahedra, all linked through common edges. According to different coordination environments, there are three kinds of O atoms in the anion. The first involves twelve terminal O atoms (labelled OTx) that only bind to one Mo atom with distances ranging from 1.691 (4) Å to 1.721 (3) Å. The second type involves six bridging O atoms (OBx) shared by two Mo atoms with distances ranging from 1.927 (3) Å to 1.951 (3) Å. The third type involves six O atoms (OHx) located between the Mo and Cr atoms with Mo—OH bond lengths ranging from 2.252 (3) Å to 2.314 (3) Å. All these bond lenghths and corresponding angles are in the normal ranges (An et al., 2005).

Abundant hydrogen bonding exist in the title structure (Table 1). The OH groups of the POM anion are involved in forming O—H···O hydrogen bonds to adjacent anions and link the [Cr(OH)6Mo6O18]3- anions into infinite chains along [100]. The chains are further connected with [Al(H2O)6]3+ octahedra through O—H···O hydrogen bonds into sheets lying parallel to (011). The O—H···O hydrogen bonds involving all the lattice water molecules finally link the sheets into a three-dimensional network (Fig. 2).

It should be noted that the title compound is isotypic with its gallium analogue [Ga(H2O)6][Cr(OH)6Mo6O18].10H2O described several years ago (Kaziev, et al. 2002). In the latter structure, the Cr3+ and Ga3+ sites show occupational disorder due to their very similar ionic radius, while such a disorder is not observed in the title compound.

Related literature top

For background literature on polyoxometalates, see: An et al. (2005); Shivaiah et al. (2003). The isotypic gallium analogue was reported by Kaziev et al. (2002).

Experimental top

CrCl3.6H2O (0.532 g, 2 mmol) and Na2MoO4.2H2O (3.629 g, 15 mmol) were dissolved in water (30 ml); ice acetic acid was dropped into the solution until it became clear. The resultant solution was heated for 1 h under stirring and AlCl3 (0.267 g, 2 mmol) was added subsequently. The mixture was heated for half an hour and cooled to room temperature. Colorless single crystals were obtained three weeks later after partial evaporation of water.

Refinement top

All H atoms were located from difference Fourier map and treated in the riding mode approximation on their parent atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The [Al(H2O)6]3+ cation and the Anderson-type anion as well as the five independent lattice water molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, 1 - y, 1 - z; (B)-x, -y, -z.]
[Figure 2] Fig. 2. Crystal packing diagram of the title compound, showing the three-dimensional network between the molecular entities through hydrogen bonding (dashed lines).
hexaaquaaluminium hexahydroxidooctadecaoxidomolybdochromate(III) decahydrate, top
Crystal data top
[Al(H2O)6][Cr(OH)6Mo6O18]·10H2OZ = 1
Mr = 1332.92F(000) = 647
Triclinic, P1Dx = 2.630 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.809 (5) ÅCell parameters from 7543 reflections
b = 11.267 (7) Åθ = 3.2–27.1°
c = 11.596 (9) ŵ = 2.63 mm1
α = 101.26 (3)°T = 290 K
β = 97.02 (3)°Block, colorless
γ = 101.81 (3)°0.12 × 0.12 × 0.11 mm
V = 841.7 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3801 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.745, Tmax = 0.770k = 1414
8257 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0331P)2 + 2.719P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max = 0.009
217 parametersΔρmax = 0.89 e Å3
24 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Al(H2O)6][Cr(OH)6Mo6O18]·10H2Oγ = 101.81 (3)°
Mr = 1332.92V = 841.7 (10) Å3
Triclinic, P1Z = 1
a = 6.809 (5) ÅMo Kα radiation
b = 11.267 (7) ŵ = 2.63 mm1
c = 11.596 (9) ÅT = 290 K
α = 101.26 (3)°0.12 × 0.12 × 0.11 mm
β = 97.02 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3346 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.770Rint = 0.037
8257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03324 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.10Δρmax = 0.89 e Å3
3801 reflectionsΔρmin = 0.86 e Å3
217 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.00000.50000.50000.0162 (4)
Cr10.00000.00000.00000.01424 (19)
Mo10.37029 (5)0.16663 (3)0.10502 (3)0.01629 (11)
Mo20.33617 (6)0.24360 (3)0.17992 (3)0.01870 (11)
Mo30.02648 (6)0.07285 (3)0.29050 (3)0.01802 (11)
OH10.2099 (4)0.0332 (3)0.0983 (3)0.0156 (6)
H10.29550.07820.09410.023*
OB10.1450 (5)0.1055 (3)0.2357 (3)0.0203 (6)
OT10.5602 (5)0.1125 (3)0.1683 (3)0.0251 (7)
OT20.4158 (5)0.3199 (3)0.1095 (3)0.0287 (8)
OH20.1174 (4)0.1756 (3)0.0024 (3)0.0159 (6)
H20.05300.22580.02170.024*
OB20.4843 (5)0.1784 (3)0.0594 (3)0.0209 (6)
OT30.3656 (6)0.3945 (3)0.1671 (3)0.0321 (8)
OT40.5053 (6)0.2483 (4)0.3027 (3)0.0365 (9)
OB30.0878 (5)0.2295 (3)0.2494 (3)0.0202 (6)
OH30.1830 (5)0.0372 (3)0.1527 (3)0.0166 (6)
H30.27050.00680.14800.025*
OT50.1586 (6)0.0662 (3)0.3999 (3)0.0315 (8)
OT60.2117 (6)0.1163 (4)0.3617 (3)0.0334 (8)
OW10.1050 (5)0.3690 (3)0.5388 (3)0.0242 (7)
H40.20730.39920.59420.036*
H50.04110.31520.57150.036*
OW20.0105 (5)0.5686 (3)0.6627 (3)0.0234 (7)
H60.01430.63940.68690.035*
H70.06890.55340.72550.035*
OW30.2655 (5)0.5935 (3)0.5085 (3)0.0254 (7)
H80.30700.64450.57580.038*
H90.32400.60290.44910.038*
OW40.9017 (6)0.2342 (3)0.6599 (4)0.0379 (9)
H100.98620.21410.70840.057*
H110.80430.24870.69550.057*
OW50.0885 (6)0.6667 (3)0.0685 (4)0.0361 (9)
H120.18790.73020.09670.054*
H130.11800.62250.00790.054*
OW60.1882 (6)0.5186 (4)0.8662 (4)0.0378 (9)
H140.13370.47530.91120.057*
H150.30780.55670.90180.057*
OW70.4894 (4)0.3814 (3)0.6484 (3)0.0359 (9)
H160.52510.42390.71990.054*
H170.47010.30520.65060.054*
OW80.4860 (4)0.1318 (3)0.5850 (3)0.0407 (9)
H180.45730.09700.64160.061*
H190.54750.08690.54160.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0168 (9)0.0139 (8)0.0166 (9)0.0037 (6)0.0007 (7)0.0011 (7)
Cr10.0137 (5)0.0128 (4)0.0148 (4)0.0034 (3)0.0000 (4)0.0008 (3)
Mo10.01433 (19)0.01556 (18)0.0194 (2)0.00386 (13)0.00296 (14)0.00448 (14)
Mo20.0168 (2)0.01554 (18)0.0188 (2)0.00120 (13)0.00073 (14)0.00287 (14)
Mo30.0201 (2)0.01879 (19)0.01451 (19)0.00612 (14)0.00132 (14)0.00159 (14)
OH10.0144 (14)0.0151 (13)0.0187 (15)0.0084 (11)0.0020 (12)0.0026 (11)
OB10.0223 (16)0.0205 (14)0.0188 (16)0.0051 (12)0.0015 (13)0.0073 (12)
OT10.0228 (17)0.0310 (17)0.0256 (18)0.0124 (13)0.0065 (14)0.0086 (14)
OT20.0266 (19)0.0228 (16)0.037 (2)0.0030 (13)0.0062 (15)0.0107 (15)
OH20.0146 (14)0.0126 (13)0.0205 (15)0.0038 (11)0.0020 (12)0.0040 (11)
OB20.0183 (16)0.0221 (15)0.0199 (16)0.0041 (12)0.0001 (13)0.0017 (12)
OT30.036 (2)0.0178 (15)0.038 (2)0.0020 (14)0.0096 (17)0.0011 (14)
OT40.030 (2)0.043 (2)0.0262 (19)0.0073 (16)0.0073 (16)0.0069 (16)
OB30.0233 (17)0.0163 (14)0.0188 (15)0.0053 (12)0.0018 (13)0.0007 (12)
OH30.0175 (15)0.0166 (13)0.0149 (14)0.0069 (11)0.0005 (12)0.0005 (11)
OT50.030 (2)0.0379 (19)0.0242 (18)0.0091 (15)0.0051 (15)0.0070 (15)
OT60.036 (2)0.038 (2)0.032 (2)0.0184 (16)0.0136 (17)0.0051 (16)
OW10.0248 (18)0.0189 (14)0.0286 (18)0.0078 (13)0.0001 (14)0.0047 (13)
OW20.0310 (19)0.0222 (15)0.0169 (15)0.0106 (13)0.0017 (13)0.0008 (12)
OW30.0215 (17)0.0267 (16)0.0216 (16)0.0024 (13)0.0032 (13)0.0013 (13)
OW40.034 (2)0.0346 (19)0.050 (2)0.0118 (16)0.0007 (18)0.0218 (18)
OW50.035 (2)0.0285 (18)0.044 (2)0.0106 (15)0.0019 (18)0.0068 (16)
OW60.036 (2)0.044 (2)0.039 (2)0.0160 (17)0.0056 (18)0.0174 (18)
OW70.030 (2)0.048 (2)0.030 (2)0.0101 (17)0.0063 (16)0.0080 (17)
OW80.036 (2)0.048 (2)0.035 (2)0.0049 (18)0.0012 (18)0.0113 (18)
Geometric parameters (Å, º) top
Al1—OW1i1.872 (3)Mo3—OB1ii1.951 (3)
Al1—OW11.872 (3)Mo3—OB31.951 (3)
Al1—OW3i1.877 (3)Mo3—OH32.300 (3)
Al1—OW31.877 (3)Mo3—OH1ii2.330 (3)
Al1—OW21.881 (3)OH1—Mo3ii2.330 (3)
Al1—OW2i1.881 (3)OH1—H10.8500
Cr1—OH3ii1.954 (3)OB1—Mo3ii1.951 (3)
Cr1—OH31.954 (3)OH2—H20.8499
Cr1—OH21.970 (3)OH3—H30.8501
Cr1—OH2ii1.970 (3)OW1—H40.8500
Cr1—OH1ii1.983 (3)OW1—H50.8500
Cr1—OH11.983 (3)OW2—H60.8501
Mo1—OT21.703 (3)OW2—H70.8499
Mo1—OT11.721 (3)OW3—H80.8500
Mo1—OB11.927 (3)OW3—H90.8500
Mo1—OB21.937 (4)OW4—H100.8500
Mo1—OH22.252 (3)OW4—H110.8500
Mo1—OH12.314 (3)OW5—H120.8559
Mo2—OT41.703 (4)OW5—H130.8496
Mo2—OT31.709 (4)OW6—H140.8500
Mo2—OB21.939 (3)OW6—H150.8500
Mo2—OB31.951 (3)OW7—H160.8509
Mo2—OH22.283 (3)OW7—H170.8480
Mo2—OH32.288 (3)OW8—H180.8499
Mo3—OT61.691 (4)OW8—H190.8500
Mo3—OT51.699 (4)
OW1i—Al1—OW1180.000 (1)OT4—Mo2—OH394.98 (16)
OW1i—Al1—OW3i89.98 (16)OT3—Mo2—OH3158.26 (16)
OW1—Al1—OW3i90.02 (16)OB2—Mo2—OH382.20 (13)
OW1i—Al1—OW390.02 (16)OB3—Mo2—OH371.27 (12)
OW1—Al1—OW389.98 (16)OH2—Mo2—OH369.73 (11)
OW3i—Al1—OW3180.0 (2)OT6—Mo3—OT5105.4 (2)
OW1i—Al1—OW289.59 (15)OT6—Mo3—OB1ii99.75 (17)
OW1—Al1—OW290.41 (15)OT5—Mo3—OB1ii97.91 (16)
OW3i—Al1—OW290.13 (15)OT6—Mo3—OB399.14 (17)
OW3—Al1—OW289.87 (15)OT5—Mo3—OB3102.04 (17)
OW1i—Al1—OW2i90.41 (15)OB1ii—Mo3—OB3147.66 (13)
OW1—Al1—OW2i89.59 (15)OT6—Mo3—OH3163.68 (15)
OW3i—Al1—OW2i89.87 (15)OT5—Mo3—OH389.62 (16)
OW3—Al1—OW2i90.13 (15)OB1ii—Mo3—OH384.03 (12)
OW2—Al1—OW2i180.000 (1)OB3—Mo3—OH371.00 (12)
OH3ii—Cr1—OH3180.00 (18)OT6—Mo3—OH1ii95.90 (16)
OH3ii—Cr1—OH296.53 (13)OT5—Mo3—OH1ii157.46 (14)
OH3—Cr1—OH283.47 (13)OB1ii—Mo3—OH1ii70.90 (12)
OH3ii—Cr1—OH2ii83.47 (13)OB3—Mo3—OH1ii81.26 (13)
OH3—Cr1—OH2ii96.53 (13)OH3—Mo3—OH1ii70.18 (12)
OH2—Cr1—OH2ii180.00 (18)Cr1—OH1—Mo1101.22 (12)
OH3ii—Cr1—OH1ii94.97 (14)Cr1—OH1—Mo3ii101.37 (13)
OH3—Cr1—OH1ii85.03 (14)Mo1—OH1—Mo3ii92.79 (11)
OH2—Cr1—OH1ii95.90 (12)Cr1—OH1—H1131.8
OH2ii—Cr1—OH1ii84.10 (12)Mo1—OH1—H1110.7
OH3ii—Cr1—OH185.03 (14)Mo3ii—OH1—H1111.9
OH3—Cr1—OH194.97 (14)Mo1—OB1—Mo3ii120.22 (16)
OH2—Cr1—OH184.10 (12)Cr1—OH2—Mo1103.79 (12)
OH2ii—Cr1—OH195.90 (12)Cr1—OH2—Mo2103.22 (13)
OH1ii—Cr1—OH1180.00 (15)Mo1—OH2—Mo293.30 (12)
OT2—Mo1—OT1104.94 (17)Cr1—OH2—H2125.8
OT2—Mo1—OB197.87 (16)Mo1—OH2—H2106.7
OT1—Mo1—OB1101.08 (16)Mo2—OH2—H2118.4
OT2—Mo1—OB2100.85 (16)Mo1—OB2—Mo2116.61 (16)
OT1—Mo1—OB296.87 (16)Mo2—OB3—Mo3118.42 (15)
OB1—Mo1—OB2149.69 (14)Cr1—OH3—Mo2103.55 (13)
OT2—Mo1—OH294.45 (14)Cr1—OH3—Mo3103.34 (14)
OT1—Mo1—OH2159.55 (14)Mo2—OH3—Mo393.88 (11)
OB1—Mo1—OH282.26 (14)Cr1—OH3—H3110.0
OB2—Mo1—OH272.74 (13)Mo2—OH3—H3110.7
OT2—Mo1—OH1162.67 (14)Mo3—OH3—H3131.6
OT1—Mo1—OH190.85 (14)Al1—OW1—H4108.5
OB1—Mo1—OH171.64 (12)Al1—OW1—H5122.9
OB2—Mo1—OH183.95 (13)H4—OW1—H597.7
OH2—Mo1—OH170.89 (11)Al1—OW2—H6122.0
OT4—Mo2—OT3105.5 (2)Al1—OW2—H7131.7
OT4—Mo2—OB298.10 (17)H6—OW2—H7103.9
OT3—Mo2—OB2101.59 (16)Al1—OW3—H8111.0
OT4—Mo2—OB399.29 (18)Al1—OW3—H9125.4
OT3—Mo2—OB397.85 (16)H8—OW3—H9120.8
OB2—Mo2—OB3149.30 (13)H10—OW4—H11107.7
OT4—Mo2—OH2162.45 (15)H12—OW5—H13108.5
OT3—Mo2—OH290.88 (16)H14—OW6—H15107.7
OB2—Mo2—OH272.01 (13)H16—OW7—H17107.5
OB3—Mo2—OH284.24 (13)H18—OW8—H19107.7
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OH3—H3···OT1iii0.851.852.681 (4)167
OH1—H1···OB2iii0.852.102.944 (4)172
OH2—H2···OW5iv0.851.822.665 (5)178
OW3—H8···OT4v0.851.832.628 (5)156
OW3—H9···OW7v0.851.812.632 (5)163
OW1—H4···OW70.852.012.730 (5)142
OW1—H5···OW4vi0.851.742.577 (5)167
OW2—H6···OB3i0.851.722.559 (4)171
OW2—H7···OW60.851.882.728 (5)178
OW4—H10···OB1vii0.851.942.737 (5)156
OW5—H12···OT1viii0.862.153.002 (6)179
OW5—H13···OW6ix0.851.992.842 (6)180
OW6—H14···OW5i0.852.042.800 (6)149
OW6—H15···OT3v0.852.453.091 (6)133
OW7—H16···OT3v0.852.132.878 (5)146
OW7—H17···OW80.851.982.759 (5)152
OW8—H18···OT1x0.852.192.902 (5)141
OW8—H18···OT6xi0.852.623.241 (5)131
OW8—H19···OW8xii0.852.563.283 (6)144
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z+1; (viii) x+1, y+1, z; (ix) x, y, z1; (x) x, y, z+1; (xi) x, y, z+1; (xii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Al(H2O)6][Cr(OH)6Mo6O18]·10H2O
Mr1332.92
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)6.809 (5), 11.267 (7), 11.596 (9)
α, β, γ (°)101.26 (3), 97.02 (3), 101.81 (3)
V3)841.7 (10)
Z1
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.12 × 0.12 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.745, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
8257, 3801, 3346
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.10
No. of reflections3801
No. of parameters217
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.86

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OH3—H3···OT1i0.851.852.681 (4)166.8
OH1—H1···OB2i0.852.102.944 (4)172.4
OH2—H2···OW5ii0.851.822.665 (5)178.1
OW3—H8···OT4iii0.851.832.628 (5)156.2
OW3—H9···OW7iii0.851.812.632 (5)163.4
OW1—H4···OW70.852.012.730 (5)142.1
OW1—H5···OW4iv0.851.742.577 (5)167.2
OW2—H6···OB3v0.851.722.559 (4)170.5
OW2—H7···OW60.851.882.728 (5)177.8
OW4—H10···OB1vi0.851.942.737 (5)155.5
OW5—H12···OT1vii0.862.153.002 (6)179.1
OW5—H13···OW6viii0.851.992.842 (6)179.8
OW6—H14···OW5v0.852.042.800 (6)149.2
OW6—H15···OT3iii0.852.453.091 (6)133.0
OW7—H16···OT3iii0.852.132.878 (5)146.0
OW7—H17···OW80.851.982.759 (5)151.6
OW8—H18···OT1ix0.852.192.902 (5)140.9
OW8—H18···OT6x0.852.623.241 (5)130.7
OW8—H19···OW8xi0.852.563.283 (6)143.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x, y, z1; (ix) x, y, z+1; (x) x, y, z+1; (xi) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by the National Basic Research Program of China (2007CB808003) and the National Natural Science Foundation of China (20973082, 20921003, 20703019).

References

First citationAn, H. Y., Li, Y. G., Wang, E. B., Xiao, D. R., Sun, C. Y. & Xu, L. (2005). Inorg. Chem. 44, 6062–6070.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaziev, G. Z., Qiguones, S. O., Bel'skii, V. K., Zavodnik, V. E., Osminkina, I. V. & de Ita, A. (2002). Russ. J. Inorg. Chem. 47, 335–340.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivaiah, V., Nagaraju, M. & Das, S. K. (2003). Inorg. Chem. 42, 6604–6606.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds