metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis(1,10-phenanthroline)chromium(III) chloride

aTaiyuan Normal Colleage, Department of Chemistry, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: xiaoli.gao@sohu.com

(Received 8 December 2010; accepted 22 December 2010; online 8 January 2011)

In the title complex, [CrCl2(C12H8N2)2]Cl, the CrIII ion is situated on a twofold rotation axis and displays a slightly distorted octa­hedral CrCl2N4 coordination geometry. The Cr environment is composed of a cis arrangement of two 1,10-phenanthroline and two chloride ligands. The chloride counter-anion exhibits half-occupation and is equally disordered over two positions.

Related literature

For background to chromium(III) complexes, see: Vincent (2000[Vincent, J. B. (2000). Acc. Chem. Res. 33, 503-510.]). For the structure of a related Cr(III) complex with phenanthroline ligands, see: Birk et al. (2008[Birk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369-m370.]).

[Scheme 1]

Experimental

Crystal data
  • [CrCl2(C12H8N2)2]Cl

  • Mr = 518.76

  • Monoclinic, C 2/c

  • a = 15.446 (7) Å

  • b = 13.762 (6) Å

  • c = 12.536 (5) Å

  • β = 100.398 (6)°

  • V = 2621.1 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.928

  • 5182 measured reflections

  • 2265 independent reflections

  • 1778 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.211

  • S = 1.07

  • 2265 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—N1 2.062 (4)
Cr1—N2 2.073 (4)
Cr1—Cl1 2.2941 (15)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chromium is known to activate enzymes, maintain protein stability and enhance carbohydrate metabolism. Organic chromium (III) sources have been shown to enhance the availability of chromium. Nutritionists believe organic chromium should be supplemented in most animal diets. A search has therefore been underway to identify the biologically active form of chromium, viz. the biomolecule that binds chromium(III) and possesses an intrinsic function associated with insulin action in mammals (Vincent, 2000). We designed and synthesized a new chromium complex, [CrCl2(C12H8N2)2]Cl.

The Cr atom has site symmetry 2 and exhibits a distorted octahedral coordination, defined of four N atoms [Cr—N1: 2.062 (4) Å, Cr—N2: 2.073 (4) Å] from two symmetry-related 1,10-phenanthroline ligands and of two symmetry-related Cl ligands [2.2941 (15) Å]. The ligands are in a cis arrangement (Fig. 1.). The two planar 1,10-phenanthroline ligands show an approximate perpendicular orientation to each other [N1—Cr1—N2A: 91.81 (14) °, N2—Cr1—N2A: 88.5 (2) °]. These values are similar to that of the structure of the related compound cis-difluoridobis(1,10-phenanthroline)chromium(III) perchlorate monohydrate (Birk et al., 2008).

The crystal packing of the title compound is displayed in Fig. 2.

Related literature top

For background to chromium(III) complexes, see: Vincent et al. (2000). For the structure of a related Cr(III) complex with phenanthroline ligands, see: Birk et al. (2008).

Experimental top

The title compound was prepared by the following method. CrCl3.6H2O (0.665 g, 0.0025 mol) and zinc powder (0.1 g, 0.0015 mol) were added into methanol (30 ml) and then refluxed for 1 h. To the mixture 1,10-phenanthroline (0.99 g, 0.0050 mol) in methanol (20 ml) was added dropwise and allowed to reflux for another 30 min. The solution was put aside and X-ray quality crystals were obtained after two days at room temperature.

Refinement top

The H atoms were treated as riding atoms, with C—H (CH) = 0.93 Å, and with Uiso(H) = 1.5 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker 2000); cell refinement: SAINT (Bruker 2000); data reduction: SAINT (Bruker 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms were omitted for clarity. [Symmetry code A: -x + 1, y, -z + 3/2.]
[Figure 2] Fig. 2. The crystal structure of title compound, projected along the c-axis.
cis-Dichloridobis(1,10-phenanthroline)chromium(III) chloride top
Crystal data top
[CrCl2(C12H8N2)2]ClF(000) = 1052
Mr = 518.76Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1354 reflections
a = 15.446 (7) Åθ = 2.7–19.9°
b = 13.762 (6) ŵ = 0.76 mm1
c = 12.536 (5) ÅT = 298 K
β = 100.398 (6)°Block, red
V = 2621.1 (19) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2265 independent reflections
Radiation source: fine-focus sealed tube1778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1818
Tmin = 0.751, Tmax = 0.928k = 1616
5182 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1164P)2 + 5.5982P]
where P = (Fo2 + 2Fc2)/3
2265 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[CrCl2(C12H8N2)2]ClV = 2621.1 (19) Å3
Mr = 518.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.446 (7) ŵ = 0.76 mm1
b = 13.762 (6) ÅT = 298 K
c = 12.536 (5) Å0.40 × 0.10 × 0.10 mm
β = 100.398 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2265 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1778 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.928Rint = 0.039
5182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.07Δρmax = 0.92 e Å3
2265 reflectionsΔρmin = 0.35 e Å3
150 parameters
Special details top

Experimental. the Cl-counter anion is only half occupied and equally disordered over two positions.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.50000.83468 (7)0.75000.0338 (4)
Cl10.60948 (7)0.94883 (9)0.76093 (10)0.0481 (4)
N10.5196 (2)0.8199 (3)0.9163 (3)0.0386 (9)
N20.5952 (2)0.7267 (3)0.7714 (3)0.0383 (9)
C10.6878 (3)0.6322 (4)0.9120 (4)0.0467 (12)
C20.7141 (4)0.6151 (4)1.0254 (5)0.0600 (14)
H20.75770.56951.04900.072*
C30.6771 (4)0.6636 (4)1.0997 (5)0.0576 (14)
H30.69570.65071.17310.069*
C40.6099 (3)0.7344 (4)1.0672 (4)0.0495 (12)
C50.5685 (4)0.7889 (4)1.1387 (4)0.0582 (14)
H50.58370.77891.21310.070*
C60.5068 (4)0.8555 (4)1.0999 (4)0.0555 (14)
H60.48060.89231.14750.067*
C70.4820 (3)0.8693 (4)0.9869 (4)0.0478 (12)
H70.43810.91420.96120.057*
C80.5826 (3)0.7539 (3)0.9552 (4)0.0380 (10)
C90.6226 (3)0.7021 (3)0.8779 (4)0.0370 (10)
C100.7257 (4)0.5865 (4)0.8319 (5)0.0588 (14)
H100.76820.53870.85060.071*
C110.6995 (4)0.6130 (5)0.7255 (5)0.0650 (16)
H110.72500.58390.67180.078*
C120.6345 (4)0.6836 (4)0.6980 (5)0.0531 (13)
H120.61800.70120.62550.064*
Cl20.6999 (6)0.6655 (4)0.4261 (5)0.157 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0324 (6)0.0364 (6)0.0334 (6)0.0000.0081 (4)0.000
Cl10.0390 (7)0.0488 (7)0.0549 (8)0.0079 (5)0.0043 (5)0.0066 (5)
N10.040 (2)0.041 (2)0.037 (2)0.0041 (17)0.0121 (17)0.0010 (16)
N20.0376 (19)0.039 (2)0.040 (2)0.0022 (16)0.0107 (16)0.0015 (17)
C10.040 (3)0.047 (3)0.053 (3)0.002 (2)0.007 (2)0.006 (2)
C20.053 (3)0.062 (3)0.061 (3)0.012 (3)0.001 (3)0.015 (3)
C30.057 (3)0.064 (4)0.046 (3)0.000 (3)0.005 (3)0.010 (3)
C40.051 (3)0.055 (3)0.041 (3)0.009 (2)0.004 (2)0.001 (2)
C50.070 (4)0.068 (4)0.037 (3)0.005 (3)0.009 (2)0.001 (3)
C60.069 (3)0.062 (3)0.039 (3)0.002 (3)0.020 (3)0.012 (2)
C70.054 (3)0.047 (3)0.045 (3)0.004 (2)0.016 (2)0.005 (2)
C80.035 (2)0.041 (2)0.038 (2)0.0057 (19)0.0053 (18)0.0008 (19)
C90.034 (2)0.036 (2)0.041 (2)0.0036 (18)0.0070 (19)0.001 (2)
C100.052 (3)0.055 (3)0.071 (4)0.021 (3)0.016 (3)0.008 (3)
C110.070 (4)0.064 (4)0.068 (4)0.025 (3)0.031 (3)0.004 (3)
C120.059 (3)0.057 (3)0.047 (3)0.011 (3)0.020 (3)0.002 (2)
Cl20.265 (8)0.125 (4)0.101 (4)0.037 (5)0.086 (5)0.027 (3)
Geometric parameters (Å, º) top
Cr1—N12.062 (4)C3—C41.428 (8)
Cr1—N1i2.062 (4)C3—H30.9300
Cr1—N2i2.073 (4)C4—C51.408 (8)
Cr1—N22.073 (4)C4—C81.417 (7)
Cr1—Cl12.2941 (15)C5—C61.348 (8)
Cr1—Cl1i2.2941 (15)C5—H50.9300
N1—C71.330 (6)C6—C71.411 (7)
N1—C81.356 (6)C6—H60.9300
N2—C121.330 (6)C7—H70.9300
N2—C91.368 (6)C8—C91.431 (6)
C1—C101.399 (8)C10—C111.372 (8)
C1—C91.403 (7)C10—H100.9300
C1—C21.426 (8)C11—C121.395 (8)
C2—C31.353 (8)C11—H110.9300
C2—H20.9300C12—H120.9300
N1—Cr1—N1i168.7 (2)C4—C3—H3119.5
N1—Cr1—N2i91.81 (14)C5—C4—C8116.2 (5)
N1i—Cr1—N2i80.07 (15)C5—C4—C3124.9 (5)
N1—Cr1—N280.07 (15)C8—C4—C3118.9 (5)
N1i—Cr1—N291.81 (14)C6—C5—C4120.4 (5)
N2i—Cr1—N288.5 (2)C6—C5—H5119.8
N1—Cr1—Cl192.00 (11)C4—C5—H5119.8
N1i—Cr1—Cl195.73 (11)C5—C6—C7120.0 (5)
N2i—Cr1—Cl1175.09 (11)C5—C6—H6120.0
N2—Cr1—Cl189.14 (11)C7—C6—H6120.0
N1—Cr1—Cl1i95.73 (11)N1—C7—C6121.8 (5)
N1i—Cr1—Cl1i92.00 (11)N1—C7—H7119.1
N2i—Cr1—Cl1i89.14 (11)C6—C7—H7119.1
N2—Cr1—Cl1i175.09 (10)N1—C8—C4123.3 (4)
Cl1—Cr1—Cl1i93.56 (8)N1—C8—C9117.4 (4)
C7—N1—C8118.3 (4)C4—C8—C9119.3 (4)
C7—N1—Cr1128.4 (3)N2—C9—C1123.1 (4)
C8—N1—Cr1113.2 (3)N2—C9—C8116.2 (4)
C12—N2—C9117.7 (4)C1—C9—C8120.6 (4)
C12—N2—Cr1129.2 (3)C11—C10—C1119.4 (5)
C9—N2—Cr1113.0 (3)C11—C10—H10120.3
C10—C1—C9117.3 (5)C1—C10—H10120.3
C10—C1—C2124.2 (5)C10—C11—C12119.9 (5)
C9—C1—C2118.5 (5)C10—C11—H11120.1
C3—C2—C1121.7 (5)C12—C11—H11120.1
C3—C2—H2119.1N2—C12—C11122.5 (5)
C1—C2—H2119.1N2—C12—H12118.7
C2—C3—C4121.1 (5)C11—C12—H12118.7
C2—C3—H3119.5
N1i—Cr1—N1—C7137.2 (4)Cr1—N1—C7—C6175.5 (4)
N2i—Cr1—N1—C793.5 (4)C5—C6—C7—N11.8 (8)
N2—Cr1—N1—C7178.4 (4)C7—N1—C8—C40.4 (7)
Cl1—Cr1—N1—C789.6 (4)Cr1—N1—C8—C4177.3 (4)
Cl1i—Cr1—N1—C74.2 (4)C7—N1—C8—C9179.5 (4)
N1i—Cr1—N1—C846.3 (3)Cr1—N1—C8—C92.6 (5)
N2i—Cr1—N1—C890.0 (3)C5—C4—C8—N10.8 (7)
N2—Cr1—N1—C81.9 (3)C3—C4—C8—N1179.7 (4)
Cl1—Cr1—N1—C886.9 (3)C5—C4—C8—C9179.2 (4)
Cl1i—Cr1—N1—C8179.3 (3)C3—C4—C8—C90.2 (7)
N1—Cr1—N2—C12177.2 (5)C12—N2—C9—C11.9 (7)
N1i—Cr1—N2—C1210.7 (4)Cr1—N2—C9—C1178.7 (4)
N2i—Cr1—N2—C1290.7 (4)C12—N2—C9—C8176.5 (4)
Cl1—Cr1—N2—C1285.0 (4)Cr1—N2—C9—C80.3 (5)
Cl1i—Cr1—N2—C12151.5 (11)C10—C1—C9—N20.1 (7)
N1—Cr1—N2—C90.8 (3)C2—C1—C9—N2177.4 (5)
N1i—Cr1—N2—C9172.9 (3)C10—C1—C9—C8178.3 (5)
N2i—Cr1—N2—C992.9 (3)C2—C1—C9—C81.0 (7)
Cl1—Cr1—N2—C991.4 (3)N1—C8—C9—N22.0 (6)
Cl1i—Cr1—N2—C932.1 (15)C4—C8—C9—N2178.0 (4)
C10—C1—C2—C3177.9 (5)N1—C8—C9—C1179.6 (4)
C9—C1—C2—C30.8 (8)C4—C8—C9—C10.5 (7)
C1—C2—C3—C40.1 (9)C9—C1—C10—C111.4 (8)
C2—C3—C4—C5179.3 (6)C2—C1—C10—C11175.7 (6)
C2—C3—C4—C80.4 (8)C1—C10—C11—C121.2 (9)
C8—C4—C5—C60.2 (8)C9—N2—C12—C112.2 (8)
C3—C4—C5—C6178.7 (5)Cr1—N2—C12—C11178.4 (4)
C4—C5—C6—C71.4 (9)C10—C11—C12—N20.7 (9)
C8—N1—C7—C60.9 (7)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[CrCl2(C12H8N2)2]Cl
Mr518.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.446 (7), 13.762 (6), 12.536 (5)
β (°) 100.398 (6)
V3)2621.1 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.751, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
5182, 2265, 1778
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.211, 1.07
No. of reflections2265
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.35

Computer programs: SMART (Bruker 2000), SAINT (Bruker 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cr1—N12.062 (4)Cr1—Cl12.2941 (15)
Cr1—N22.073 (4)
 

References

First citationBirk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369–m370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVincent, J. B. (2000). Acc. Chem. Res. 33, 503–510.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds