inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrayttrium(III) trisulfide disilicate

Lukasz A. Koscielski and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Received 14 December 2010; accepted 28 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (Si–O) = 0.002 Å; R factor = 0.020; wR factor = 0.045; data-to-parameter ratio = 14.2.

Tetrayttrium(III) trisulfide disilicate, $Y_4S_3(Si_2O_7)$, crystallizes in the $Sm_4S_3(Si_2O_7)$ structure type. The structure consists of isolated $(Si_2O_7)^{6-}$ units (2mm. symmetry) and two crystallographically independent Y^{3+} cations bridged by one S and one O atom. The first Y atom (site symmetry .m.) is coordinated by three O atoms and three S atoms in a trigonal–prismatic arrangement whereas the second Y atom (site symmetry ..2) is coordinated by six O atoms and three S atoms in a tricapped trigonal–prismatic arrangement.

Related literature

For lanthanide sulfide disilicates of formula $Ln_4S_3(Si_2O_7)$, see: Zeng *et al.* (1999) for Ln = La; Hartenbach & Schleid (2002) for Ln = Ce; Sieke & Schleid (2000) for Ln = Pr; Grupe *et al.* (1992) for Ln = Nd, Er; Sieke & Schleid (1999) for Ln = Sm; Sieke *et al.* (2002) for Ln = Gd, Tb, Dy, Ho, Er, Tm; Range *et al.* (1996) for Ln = Yb. For lanthanide selenide disilicates of formula $Ln_4Se_3(Si_2O_7)$, see: Deudon *et al.* (1993) for Ln = La; Grupe & Urland (1989) for Ln = Ce, Nd; Grupe *et al.* (1992) for Ln = Pr, Sm, Gd. Ionic radii were taken from Shannon (1976). For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Larroque & Beauvy (1986).

Experimental

Crystal data

 $\begin{array}{l} Y_4S_3({\rm Si_2O_7})\\ M_r = 620.00\\ {\rm Tetragonal,}\ I4_1/and\\ a = 11.6706\ (16)\ {\rm \AA}\\ c = 13.5873\ (19)\ {\rm \AA}\\ V = 1850.6\ (4)\ {\rm \AA}^3 \end{array}$

Z = 8 Mo K α radiation μ = 25.78 mm⁻¹ T = 100 K 0.10 × 0.08 × 0.08 mm

Data collection

Bruker APEXII CCD

```
diffractometer
Absorption correction: numerical
[face-indexed using SADABS
(Sheldrick, 2008a)]
T_{min} = 0.191, T_{max} = 0.238
```

Refinement

Table 1

$R[F^2 > 2\sigma(F^2)] = 0.020$	47 parameters
$wR(F^2) = 0.045$	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
S = 1.25	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
668 reflections	

10831 measured reflections

668 independent reflections

 $R_{\rm int} = 0.066$

587 reflections with $I > 2\sigma(I)$

Selected	geometric	parameters	(Å,	°).

Y1-O2	2.279 (3)	Y2-O1 ^{iv}	2.530 (2)
Y1-O1 ⁱ	2.428 (2)	Y2-S1 ^{iv}	2.8419 (9)
Y1-S1 ⁱⁱ	2.7714 (8)	Y2-S3 ^v	2.8652 (6)
Y1-S2	2.7874 (6)	Si1-O3	1.621 (2)
Y2–O1 ⁱⁱⁱ	2.355 (2)	Si1-O1	1.623 (2)
Y2–O2 ^{iv}	2.3884 (15)	Si1-O2	1.641 (3)
$Y1^{vi} - S1 - Y2^{vii}$ $Y1^{viii} - O1 - Y2^{ix}$	90.389 (13) 106.88 (8)	Si1 ^x -O3-Si1	128.1 (3)
Symmetry codes: (i) y	$-\frac{1}{4}, x - \frac{1}{4}, z + \frac{1}{4}$; (ii)	$-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (iii) -	$y + \frac{1}{4}, x + \frac{1}{4}, -z + \frac{3}{4}$

Symmetry obtas: (i) $y = \frac{1}{4}, x = \frac{1}{4}, z = \frac{1}{4}, (ii) = x + \frac{1}{2}, y, z = \frac{1}{2}, (ii) = y + \frac{1}{4}, x = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y + \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y + \frac{1}{4}, z = \frac{1}{4}, (iv) = x + \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = x, y = \frac{1}{4}, z = \frac{1}{4}, (iv) = \frac{1}{4}, (iv) = \frac{1}{4}, z = \frac{1}{4}, (iv) =$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *CrystalMaker* (Palmer, 2009); software used to prepare material for publication: *SHELXL97*.

This research was supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2440).

References

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deudon, C., Meerschaut, A. & Rouxel, J. (1993). J. Solid State Chem. 104, 282–288.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Grupe, M., Lissner, F., Schleid, T. & Urland, T. (1992). Z. Anorg. Allg. Chem. 616, 53–60.
- Grupe, M. & Urland, W. (1989). Naturwissenschaften, 76, 327-329.
- Hartenbach, I. & Schleid, T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 175– 176.
- Larroque, R. C. & Beauvy, M. (1986). J. Less-Common Met. 121, 487-496.
- Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.
- Range, K.-J., Andratschke, M. & Gietl, A. (1996). Z. Kristallogr. 211, 816.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.
- Sieke, C., Hartenbach, I. & Schleid, T. (2002). Z. Naturforsch. Teil B, 57, 1427– 1432.
- Sieke, C. & Schleid, T. (1999). Z. Anorg. Allg. Chem. 625, 131-136.

Sieke, C. & Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 196-201.

Zeng, H.-Y., Mao, J.-G. & Huang, J.-S. (1999). J. Alloys Compd, 291, 89-93.

supporting information

Acta Cryst. (2011). E67, i16 [doi:10.1107/S1600536810054607]

Tetrayttrium(III) trisulfide disilicate

Lukasz A. Koscielski and James A. Ibers

S1. Comment

Tetrayttrium(III) trisulfide disilicate, $Y_4S_3(Si_2O_7)$, crystallizes in the $Sm_4S_3(Si_2O_7)$ structure type (Grupe *et al.*, 1992). A view of the coordination environment of the atoms in $Y_4S_3(Si_2O_7)$ is shown in Fig. 1. There are two crystallographically independent yttrium atoms. Atoms Y1 and Y2 are at sites of symmetry *.m.* and *..*2, respectively. Atom Y1 is coordinated by three O atoms and three S atoms in a distorted trigonal-prismatic arrangement whereas atom Y2 is coordinated by six O atoms and three S atoms in the form of a distorted tri-capped trigonal prism. There are three crystallographically independent S atoms. Atoms S1, S2, and S3 are at sites of symmetry *.2.*, $\overline{4m2}$, and $\overline{4m2}$, respectively. Atoms S1 and S2 are coordinated by four Y atoms in disphenoidal arrangements and atom S3 is coordinated by four Y atoms in a square-planar arrangement. There is one crystallographically independent Si atom at a site of symmetry *.m.* and three crystallographically independent O atoms at sites of symmetry 1, *.m.*, and 2*mm.* . The disilicate (Si₂O₇)⁶ units (symmetry 2*mm.*) are made up of two corner-sharing silicate tetrahedra in the form of a bow-tie. These units stack in a staggered fashion along the *c*-axis as seen in Fig. 2.

There exist eleven $Ln_4Q_3(Si_2O_7)$ analogues where Ln is a lanthanide and Q is S, specifically when Ln = La-Nd, Sm, Gd-Tm (Zeng *et al.*, 1999; Hartenbach & Schleid, 2002; Sieke & Schleid, 1999; Grupe *et al.*, 1992; Sieke & Schleid, 1998; Sieke *et al.*, 2002; Range *et al.*, 1996). There exist six $Ln_4Q_3(Si_2O_7)$ analogues of the title compound where Q = Se, specifically when Ln = La—Nd, Sm, Gd (Deudon *et al.*, 1993; Grupe & Urland, 1989; Grupe *et al.*, 1992). No analogues where Q = Te were found in the literature.

The title compound crystallizes with eight formula units in space group $I4_1/amd$. The unit-cell dimensions are a = 11.6706 (16) Å and c = 13.5873 (19) Å. For the $Ln_4S_3(Si_2O_7)$ analogues, the unit cell varies between a = 12.098 (3) Å and c = 14.379 (5) Å for Ln = La (Zeng *et al.*, 1999) and a = 11.543 (1) Å and c = 13.322 (1) Å for Ln = Yb (Range *et al.*, 1996). A plot of axis length *versus* lanthanide crystal radius (Shannon, 1976) leads to nearly linear curves (Sieke *et al.*, 2002) and adding Ln = Y to the plot not surprisingly keeps the near linearity. The plot is shown in Fig. 3. The unit-cell dimensions of $Y_4S_3(Si_2O_7)$ are closest to that of Ho₄S₃(Si₂O₇), where a = 11.6595 (10) Å and c = 13.5577 (12) Å (Sieke *et al.*, 2002). In fact, of all the lanthanide radii, the crystal radius of Ho (1.212 Å) is closest to that of Y (1.215 Å) (Shannon, 1976).

S2. Experimental

The compound was synthesized accidentally. ThO₂ (Alfa-Aesar), Y_2S_3 (Strem, 99.9%) S (Alfa-Aesar, 99.99%), and Sb (Aldrich, 99.5%), were used as received. Sb₂S₃ was prepared from the direct reaction of the elements in a sealed fused-silica tube at 1123 K. ThOS was prepared from ThO₂ and S following a modified procedure by Larroque *et al.* (1986). A fused-silica tube was loaded with ThOS (35 mg, 0.125 mmol) and Y_2S_3 (35.6 mg, 0.130 mmol), evacuated to near 10⁻⁴ Torr, flame sealed, and placed in a computer-controlled furnace. It was heated to 1273 K in 24 h, kept at 1273 K for 168 h, cooled to 873 K in 198 h, and then rapidly cooled to 298 K in 5 h. The resulting tan powder (50 mg) was loaded with

 Sb_2S_3 (20 mg, 0.6 mmol) in a fused-silica tube and heated as before. The resulting tube was etched and contained clear crystals of composition Y/S/Si/O as determined by EDX analysis. The silicon and oxygen were abstracted from the silica tube and introduced into the reaction in the second step.

S3. Refinement

Origin choice 2 of space group $I4_1/amd$ was used. The structure was standardized by means of the program *STRUCTURE TIDY* (Gelato & Parthé, 1987). The highest peak (0.61 (16) e Å⁻³) is 0.48 Å from atom O3 and the deepest hole (-0.77 (16) e Å⁻³) is 0.45 Å from atom Y1.

Figure 1

View showing the local coordination environment of atoms Y1 and Y2 as well as the disilicate unit. The 95% probability displacement ellipsoids are depicted.

Figure 2

View down the *b*-axis (left) and down the *c*-axis (right). The disilicate units are staggered when viewed down the *c*-axis. Colour key: yttrium – blue, sulfur – brown, silicate tetrahedra – green. Unit cell is outlined.

Figure 3

Plot of axial length *versus* lanthanide crystal radius for a 9-coordinate lanthanide in the $Ln_4S_3(Si_2O_7)$ structure family (Ln = lanthanide element). Axial length decreases as the atomic mass of the lanthanide increases owing to the lanthanide contraction. Yttrium fits on the plot closest to holmium.

Tetrayttrium(III) trisulfide disilicate

8
00) = 2304
$= 4.451 \text{ Mg m}^{-3}$
$K\alpha$ radiation, $\lambda = 0.71073$ Å
l parameters from 2730 reflections
2.3–27.6°
25.78 mm ⁻¹

T = 100 KPolyhedron, colorless

Data collection

Bruker APEXII CCD diffractometer	10831 measured reflections 668 independent reflections
Radiation source: fine-focus sealed tube	587 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.066$
ωscans	$\theta_{\rm max} = 29.2^\circ, \ \theta_{\rm min} = 2.3^\circ$
Absorption correction: numerical	$h = -15 \rightarrow 15$
[face-indexed using SADABS (Sheldrick,	$k = -15 \rightarrow 15$
2008 <i>a</i>)]	$l = -18 \rightarrow 18$
$T_{\min} = 0.191, T_{\max} = 0.238$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.020$	$w = [1/[\sigma^2(F_o^2) + (0.0199*F_o^2)^2]$
$wR(F^2) = 0.045$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.25	$\Delta \rho_{\rm max} = 0.61 \ { m e} \ { m \AA}^{-3}$
668 reflections	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$
47 parameters	Extinction correction: SHELXL97 (Sheldrick,
0 restraints	2008 <i>a</i>), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant	Extinction coefficient: 0.00065 (7)
direct methods	

 $0.10 \times 0.08 \times 0.08 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Y1	0.0000	0.01464 (4)	0.34012 (3)	0.00768 (13)	
Y2	0.17360 (2)	0.42360 (2)	0.8750	0.00517 (13)	
S 1	0.35327 (9)	0.0000	0.0000	0.0096 (2)	
S2	0.0000	0.2500	0.3750	0.0089 (4)	
S3	0.0000	0.7500	0.1250	0.0052 (4)	
Si1	0.0000	0.12512 (10)	0.09531 (9)	0.0049 (2)	
01	0.12244 (17)	0.10968 (19)	0.04018 (15)	0.0082 (5)	
O2	0.0000	0.0169 (2)	0.1724 (2)	0.0062 (6)	
O3	0.0000	0.2500	0.1475 (3)	0.0110 (10)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Y1	0.0078 (2)	0.0087 (2)	0.0065 (2)	0.000	0.000	-0.00089 (16)	
Y2	0.00547 (15)	0.00547 (15)	0.0046 (2)	0.00152 (15)	0.00013 (11)	-0.00013 (11)	
S 1	0.0059 (5)	0.0152 (6)	0.0077 (6)	0.000	0.000	0.0041 (4)	
S2	0.0098 (7)	0.0098 (7)	0.0072 (11)	0.000	0.000	0.000	
S3	0.0048 (6)	0.0048 (6)	0.0062 (10)	0.000	0.000	0.000	
Si1	0.0055 (6)	0.0041 (5)	0.0050 (6)	0.000	0.000	0.0006 (4)	
01	0.0044 (10)	0.0116 (11)	0.0085 (12)	-0.0005 (9)	0.0019 (8)	0.0017 (9)	
O2	0.0036 (14)	0.0048 (14)	0.0103 (18)	0.000	0.000	-0.0008 (12)	
03	0.020 (2)	0.007 (2)	0.006 (2)	0.000	0.000	0.000	

Y1—O2	2.279 (3)	S1—Y1 ^{xvii}	2.7714 (8)
Y1—O1 ⁱ	2.428 (2)	S1—Y2 ^{xviii}	2.8420 (9)
Y1—O1 ⁱⁱ	2.428 (2)	S1—Y2 ^{vii}	2.8420 (9)
Y1—S1 ⁱⁱⁱ	2.7714 (8)	S2—Y1 ^x	2.7874 (6)
Y1—S1 ^{iv}	2.7714 (8)	S2—Y1 ^{xviii}	2.7874 (6)
Y1—S2	2.7874 (6)	S2—Y1 ^{xix}	2.7874 (6)
Y1—Si1 ^v	3.4158 (8)	S3—Y2 ^{xii}	2.8652 (5)
Y1—Si1 ⁱⁱ	3.4158 (8)	S3—Y2 ^{xv}	2.8652 (6)
Y1—Y2 ^{vi}	3.7117 (5)	S3—Y2 ^{xx}	2.8652 (6)
Y1—Y2 ^{vii}	3.7117 (5)	S3—Y2 ^{xxi}	2.8652 (5)
Y1—Y2 ^{viii}	3.9830 (6)	Si1—O3	1.621 (2)
Y1—Y2 ^{ix}	3.9830 (6)	Si1—O1	1.623 (2)
Y2—O1 ^x	2.355 (2)	Si1—O1 ^{xxii}	1.623 (2)
Y2—O1 ^{xi}	2.355 (2)	Si1—O2	1.641 (3)
Y2—O2 ^{xii}	2.3884 (15)	Si1—Y2 ^{vi}	3.1303 (10)
Y2—O2 ^{xiii}	2.3884 (15)	Si1—Y2 ^{vii}	3.1303 (10)
Y2—O1 ^{xii}	2.530 (2)	Si1—Y1 ^{xxiii}	3.4158 (8)
Y2—O1 ^{xiv}	2.530 (2)	Si1—Y1 ^{xxiv}	3.4158 (8)
Y2—S1 ^{xii}	2.8419 (9)	O1—Y2 ^{xviii}	2.355 (2)
Y2—S1 ^x	2.8419 (9)	O1—Y1 ^{xxiii}	2.428 (2)
Y2—S3 ^{xv}	2.8652 (6)	O1—Y2 ^{vii}	2.530 (2)
Y2—Si1 ^{xiii}	3.1303 (10)	O2—Y2 ^{vi}	2.3884 (15)
Y2—Si1 ^{xii}	3.1303 (10)	O2—Y2 ^{vii}	2.3884 (15)
Y2—Y1 ^{xii}	3.7117 (5)	O3—Si1 ^{xix}	1.621 (2)
S1—Y1 ^{xvi}	2.7714 (8)		()
O2-Y1-O1 ⁱ	74.24 (7)	$O1^{xi}$ Y2 S 3^{xv}	72.79 (6)
O2—Y1—O1 ⁱⁱ	74.24 (7)	$O2^{xii}$ $Y2$ $S3^{xv}$	73.89 (6)
01 ⁱ —Y1—O1 ⁱⁱ	84.81 (11)	$O2^{xiii}$ — $Y2$ — $S3^{xv}$	73.89 (6)
O2—Y1—S1 ⁱⁱⁱ	141.68 (2)	$O1^{xii}$ $Y2$ $S3^{xv}$	116.11 (5)
O1 ⁱ —Y1—S1 ⁱⁱⁱ	126.41 (5)	$O1^{xiv}$ $Y2$ $S3^{xv}$	116.11 (5)
O1 ⁱⁱ —Y1—S1 ⁱⁱⁱ	76.13 (5)	S1 ^{xii} —Y2—S3 ^{xv}	138.038 (9)
O2—Y1—S1 ^{iv}	141.68 (2)	S1 ^x —Y2—S3 ^{xv}	138.038 (9)
$O1^{i}$ — $Y1$ — $S1^{iv}$	76.13 (5)	Y1 ^{xvi} —S1—Y1 ^{xvii}	103.68 (4)
$O1^{ii}$ $Y1$ $S1^{iv}$	126.41 (5)	Y1 ^{xvi} —S1—Y2 ^{xviii}	154.823 (15)
S1 ⁱⁱⁱ —Y1—S1 ^{iv}	76.32 (4)	Y1 ^{xvii} —S1—Y2 ^{xviii}	90.389 (13)
O2—Y1—S2	99.13 (7)	Y1 ^{xvi} —S1—Y2 ^{vii}	90.389 (13)
O1 ⁱ —Y1—S2	136.14 (5)	Y1 ^{xvii} —S1—Y2 ^{vii}	154.823 (15)
$O1^{ii}$ —Y1—S2	136.14 (5)	Y2 ^{xviii} —S1—Y2 ^{vii}	84.90 (3)
$S1^{iii}$ — $Y1$ — $S2$	85.841 (11)	$Y1^{x}$ — $S2$ — $Y1^{xviii}$	160.421 (18)
S1 ^{iv} —Y1—S2	85.841 (11)	$Y1^x$ — $S2$ — $Y1^{xix}$	91.657 (3)
$O1^{x} - Y2 - O1^{xi}$	145.57 (11)	$Y1^{xviii}$ $S2 - Y1^{xix}$	91.657 (3)
$O1^{x}$ $Y2$ $O2^{xii}$	73.66 (8)	Y1 ^x —S2—Y1	91.657 (3)
$O1^{xi}$ $Y2$ $O2^{xii}$	96.72 (8)	$Y1^{xviii}$ $S2 - Y1$	91.657 (3)
$O1^{x}$ $Y2$ $O2^{xiii}$	96.72 (8)	$Y1^{xix}$ — $S2$ — $Y1$	160.420 (18)
$O1^{xi}$ $Y2$ $O2^{xiii}$	73.66 (8)	Y2 ^{xii} —S3—Y2 ^{xv}	180.0
	× /		

Geometric parameters (Å, °)

O2 ^{xii} —Y2—O2 ^{xiii}	147.78 (12)	$Y2^{xii}$ — $S3$ — $Y2^{xx}$	90.0
O1 ^x —Y2—O1 ^{xii}	127.80 (7)	$Y2^{xv}$ — $S3$ — $Y2^{xx}$	90.0
O1 ^{xi} —Y2—O1 ^{xii}	69.36 (8)	$Y2^{xii}$ — $S3$ — $Y2^{xxi}$	90.0
$O2^{xii}$ —Y2— $O1^{xii}$	62.05 (8)	$Y2^{xv}$ — $S3$ — $Y2^{xxi}$	90.0
O2 ^{xiii} —Y2—O1 ^{xii}	135.47 (8)	$Y2^{xx}$ — $S3$ — $Y2^{xxi}$	180.0
O1 ^x —Y2—O1 ^{xiv}	69.36 (8)	O3—Si1—O1	107.56 (10)
$O1^{xi}$ $Y2$ $O1^{xiv}$	127.80 (7)	O3—Si1—O1 ^{xxii}	107.56 (10)
$O2^{xii}$ —Y2— $O1^{xiv}$	135.47 (8)	O1—Si1—O1 ^{xxii}	123.34 (16)
O2 ^{xiii} —Y2—O1 ^{xiv}	62.05 (8)	O3—Si1—O2	114.39 (18)
O1 ^{xii} —Y2—O1 ^{xiv}	127.78 (9)	O1—Si1—O2	102.07 (10)
O1 ^x —Y2—S1 ^{xii}	140.43 (6)	O1 ^{xxii} —Si1—O2	102.07 (10)
O1 ^{xi} —Y2—S1 ^{xii}	70.68 (5)	Si1—O1—Y2 ^{xviii}	132.95 (12)
$O2^{xii}$ —Y2—S1 ^{xii}	130.09 (7)	Si1—O1—Y1 ^{xxiii}	113.44 (11)
O2 ^{xiii} —Y2—S1 ^{xii}	76.63 (6)	Y2 ^{xviii} —O1—Y1 ^{xxiii}	101.79 (7)
O1 ^{xii} —Y2—S1 ^{xii}	68.44 (5)	Si1—O1—Y2 ^{vii}	95.33 (10)
O1 ^{xiv} —Y2—S1 ^{xii}	73.32 (5)	Y2 ^{xviii} —O1—Y2 ^{vii}	103.46 (8)
$O1^{x}$ $Y2$ $S1^{x}$	70.68 (5)	Y1 ^{xxiii} —O1—Y2 ^{vii}	106.88 (8)
$O1^{xi}$ Y2 S 1^{x}	140.43 (6)	Si1—O2—Y1	130.32 (16)
$O2^{xii}$ —Y2—S1 ^x	76.63 (6)	Si1—O2—Y2 ^{vi}	100.30 (9)
$O2^{xiii}$ $Y2$ $S1^{x}$	130.09 (7)	$Y1 - O2 - Y2^{vi}$	105.32 (8)
$O1^{xii}$ $Y2$ $S1^x$	73.32 (5)	Si1—O2—Y2 ^{vii}	100.30 (9)
$O1^{xiv}$ $Y2$ $S1^x$	68.44 (5)	Y1—O2—Y2 ^{vii}	105.32 (8)
$S1^{xii}$ $Y2$ $S1^x$	83.925 (17)	Y2 ^{vi} —O2—Y2 ^{vii}	116.05 (12)
$O1^{x}$ $Y2$ $S3^{xv}$	72.79 (6)	Si1 ^{xix} —O3—Si1	128.1 (3)

Symmetry codes: (i) y-1/4, x-1/4, z+1/4; (ii) -y+1/4, x-1/4, z+1/4; (iii) -x+1/2, -y, z+1/2; (iv) x-1/2, y, -z+1/2; (v) y-1/4, -x-1/4, z+1/4; (vi) -y+1/4, x-1/4, z-3/4; (vii) x, y-1/2, -z+1; (viii) x-1/2, y-1/2, -z+1; (viii) x-1/2, y-1/2, -z+1; (viii) x-1/2, -z+1/2; (ix) -y+1/4, x+1/4, -z+3/4; (ix) -y+1/2, -z+1/2; (ix) -y+1/4, x+1/4, -z+3/4; (ix) -y-1/4, -x+1/4, -z+1/2; (ix) -y-1/4, -x+1/4, -z+1/4; (ix) -y-1/4, -x+1/4, -z+1/4; (ix) -y-1/4, -x+1/4, -z+1/4; (ix) -y-1/4; (ix) -y-1/