Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of synthetic warwickite, $\mathbf{M g}_{3} \mathbf{T i O}_{\mathbf{2}}\left(\mathrm{BO}_{3}\right)_{\mathbf{2}}$

Tetsuya Kawano and Hisanori Yamane*

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

Correspondence e-mail: yamane@tagen.tohoku.ac.jp

Received 22 December 2010; accepted 14 January 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{B})=0.003 \AA$; disorder in main residue; R factor $=0.026 ; w R$ factor $=0.070$; data-to-parameter ratio $=8.3$.

Single crystals of warwickite, trimagnesium titanium(IV) dioxide bis(borate), $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$, were prepared by slow cooling of the melt. The title compound is isotypic with $\mathrm{Co}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$. In contrast to the previous refinement of warwickite [Moore \& Araki (1974). Am. Mineral. 59, 9851004], that reported only isotropic atomic displacement parameters for all atoms, anisotropic displacement parameters of all atoms were refined during the current redetermination. All atoms are situated on special positions (site symmetry.m.). One of the two Mg sites is statistically disordered with Ti atoms (ratio 1:1), while the other is fully occupied by Mg atoms. The occupancy ratio of the Mg and Ti atoms is similar to that reported in the previous study. Metal atoms (M) at the $\mathrm{Ti} / \mathrm{Mg}$ and Mg sites are coordinated by six O atoms in form of distorted octahedra. Four edge-sharing MO_{6} octahedra form $M_{4} \mathrm{O}_{18}$ units, which are connected by common corners into layers parallel to (010). Adjacent layers are linked along [010] into a framework structure by sharing common edges. The B atoms are located in the triangular prismatic tunnels of the framework.

Related literature

For the structure determination of natural warwickite, $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$, see: Takéuchi et al. (1950); Moore \& Araki (1974). For the synthesis and crystal structure analysis of $\mathrm{Co}_{3} M_{\mathrm{O}_{2}}\left(\mathrm{BO}_{3}\right)_{2}(M=\mathrm{Ti}, \mathrm{Zr})$, see: Utzolino \& Bluhm (1995). For the synthesis of $\mathrm{Mg}_{5} \mathrm{TiO}_{4}\left(\mathrm{BO}_{3}\right)_{2}$ and $\mathrm{Mg}_{3} \mathrm{ZrO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$, see: Konijnendijk \& Blasse (1985). For the structure of $\mathrm{Mg}_{5} \mathrm{TiO}_{4}\left(\mathrm{BO}_{3}\right)_{2}$, see: Kawano \& Yamane (2010). For bond-valence-sum calculations, see: Brown \& Altermatt (1985). For bond-valence parameters, see: Brese \& O’Keeffe (1991). For structure standardization, see: Gelato \& Parthé (1987).

Experimental

Crystal data
$\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$
$M_{r}=270.45$
Orthorhombic, Pnma
$V=270.86(3) \AA^{3}$
$Z=2$
$a=9.3013$ (5) Å
Mo $K \alpha$ radiation
$b=3.10080$ (14) \AA
$c=9.3914$ (6) A
$T=293 \mathrm{~K}$
$0.17 \times 0.17 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID II
diffractometer
Absorption correction: numerical (NUMABS; Higashi, 1999)
$T_{\text {min }}=0.791, T_{\text {max }}=0.839$
2510 measured reflections 364 independent reflections 348 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.070$
$S=1.20$
364 reflections

44 parameters
44 parameters
$\Delta \rho_{\max }=0.36 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right), M=(\mathrm{Mg}, \mathrm{Ti})$.

$M 1-\mathrm{O}^{\mathrm{i}}$	$1.9702(12)$	$\mathrm{Mg} 2-\mathrm{O} 1$	$2.1387(19)$
$M 1-\mathrm{O}^{i \mathrm{ii}}$	$1.9089(19)$	$\mathrm{Mg} 2-\mathrm{O} 2^{\mathrm{v}}$	$2.1522(13)$
$M 1-\mathrm{O} 2$	$2.0730(18)$	$\mathrm{B} 1-\mathrm{O} 3$	$1.353(3)$
$M 1-\mathrm{O}^{\mathrm{i}}$	$2.1565(13)$	$\mathrm{B} 1-\mathrm{O} 2$	$1.393(3)$
$\mathrm{Mg} 2-\mathrm{O} 3^{\mathrm{iii}}$	$2.0043(12)$	$\mathrm{B} 1-\mathrm{O} 1$	$1.395(3)$
$\mathrm{Mg} 2-\mathrm{O} 4^{\mathrm{iv}}$	$2.0698(19)$		
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 2$	$119.1(2)$	$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 1$	$120.3(2)$
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 1$	$120.7(2)$		

Symmetry codes: (i) $-x+\frac{1}{2},-y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (iii) $-x,-y,-z+1$; (iv)
$x-\frac{1}{2}, y,-z+\frac{3}{2} ;(\mathrm{v})-x+\frac{1}{2},-y+1, z+\frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma \& Izumi, 2008); software used to prepare material for publication: SHELXL97.

This work was supported in part by the Global COE Program 'Materials Integration, Tohoku University' and by a Grant-in-Aid for Scientific Research (B) (No. 21350113, 2009) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

[^0] IUCr electronic archives (Reference: WM2443).

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Kawano, T. \& Yamane, H. (2010). Acta Cryst. C66, i92-i94.
Konijnendijk, W. L. \& Blasse, G. (1985). Mater. Chem. Phys. 12, 591-599.
Momma, K. \& Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.
Moore, P. B. \& Araki, T. (1974). Am. Mineral. 59, 985-1004.

inorganic compounds

Rigaku/MSC (2005). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Takéuchi, Y., Watanabé, T. \& Ito, T. (1950). Acta Cryst. 3, 98-107.
Utzolino, A. \& Bluhm, K. (1995). Z. Naturforsch. Teil B, 50, 1653-1657.

supporting information

Acta Cryst. (2011). E67, i18-i19 [doi:10.1107/S1600536811002157]

Redetermination of synthetic warwickite, $\mathbf{M g}_{3} \mathbf{T i O}_{\mathbf{2}}\left(\mathrm{BO}_{3}\right)_{2}$

Tetsuya Kawano and Hisanori Yamane

S1. Comment

Crystal structure determinations of the mineral warwickite, $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$, were reported by Takéuchi et al. (1950) and Moore \& Araki (1974). The natural samples contained a few amount of Fe and Al. The crystal structure of synthetic $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ has not been analyzed up to now. We obtained single crystals of this compound during the preparation of $\mathrm{Mg}_{5} \mathrm{TiO}_{4}\left(\mathrm{BO}_{3}\right)_{2}$ (Kawano \& Yamane, 2010). Anisotropic atomic displacement parameters $\left(U_{i j}\right)$ of $\mathrm{Mg}, \mathrm{Ti}, \mathrm{B}$ and O atoms were refined in the present study. Moore \& Araki (1974) refined isotropic atomic displacement parameters ($B_{\text {iso }}$) of Mg , Ti, B and O atoms; neither U nor B-values were reported by Takéuchi et al. (1950).
Synthetic warwickite-type oxyborates with general composition $M^{1 \mathrm{I}}{ }_{3} M^{\mathrm{IV}} \mathrm{O}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ are known for $\mathrm{Co}_{3} M \mathrm{O}_{2}\left(\mathrm{BO}_{3}\right)_{2}[M=\mathrm{Ti}$, Zr (Utzolino \& Bluhm, 1995)] and $\mathrm{Mg}_{3} \mathrm{ZrO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ (Konijnendijk \& Blasse, 1985). However, only the crystal structures of $\mathrm{Co}_{3}{M \mathrm{O}_{2}\left(\mathrm{BO}_{3}\right)_{2}(M=\mathrm{Ti}, \mathrm{Zr}) \text { were analyzed. The title compound } \mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2} \text { is isotypic with } \mathrm{Co}_{3} M \mathrm{MO}_{2}\left(\mathrm{BO}_{3}\right)_{2}[M=, ~}_{\text {[}}$ Ti, Zr (Utzolino \& Bluhm, 1995)].
Figs. 1 and 2 show the coordination environments of the $\mathrm{Mg}, \mathrm{Ti}, \mathrm{B}$ and O atoms, and the crystal structure of $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$, respectively. In the asymmetric unit, there is one $\mathrm{Ti} / \mathrm{Mg}$ mixed site (M1) with occupancies of $0.5 / 0.5$ and one Mg site (M2). Moore and Araki (1974) refined the site occupancy factors of Mg and Ti atoms at the $M 1$ and $M 2$ sites, ignoring Al and Fe atoms due to their similarities with the scattering profiles of Mg^{2+} and Ti^{4+}, respectively. Refined occupancy factors were $M 1=\mathrm{Mg}_{0.96(1)} / \mathrm{Ti}_{0.04(1)}$ and $M 2=\mathrm{Mg}_{0.62(2)} / \mathrm{Ti}_{0.38(2)}$ and an ideal formula of $\mathrm{Mg}\left(\mathrm{Mg}_{0.5} \mathrm{Ti}_{0.5}\right) \mathrm{O}_{2}\left[\mathrm{BO}_{3}\right]$ was suggested (Moore \& Araki, 1974). Our refinement ($M 1=\mathrm{Mg} 1$ and $M 2=\mathrm{Mg}_{0.5} / \mathrm{Ti}_{0.5}$) is consistent with the ideal formula. Although Takéuchi et al. (1950) reported the atomic coordinates of natural warwickite, site occupancy factors of the $M 1$ and $M 2$ sites were not reported.
All atoms are at special positions $(x, 1 / 4, z), 4 c$, with site symmetries of (.m.). Mg and Ti atoms occupy six-coordinated oxygen-octahedral sites, forming layers composed of $M_{4} \mathrm{O}_{18}(M=\mathrm{Ti} / \mathrm{Mg}, \mathrm{Mg})$ units. The layers are connected by edgesharing O 4 atoms of $(\mathrm{Ti} 1 / \mathrm{Mg} 1) \mathrm{O}_{6}$ and ${\mathrm{Mg} 2 \mathrm{O}_{6}}^{0}$ octahedra into a three-dimensional framework. B 1 atoms are located in triangular prismatic tunnels of the framework.
Bond valence sums (BVS; Brown \& Altermatt, 1985) of the Mg, Ti and B atoms were calculated with the bond valence parameters of $1.693 \AA$ for $\mathrm{Mg}^{2+}, 1.815 \AA$ for Ti^{4+} and $1.371 \AA$ for B^{3+} (Brese \& $\mathrm{O}^{\prime} \mathrm{Keeffe}, 1991$). The BVS values of the Mg 2 and B 1 atoms were 2.1 and 2.9, respectively. Those of the Ti1 and Mg 1 atoms at the $\mathrm{Ti} 1 / \mathrm{Mg} 1$ site were 3.22 and 2.31 , respectively. The average of these value is 2.8 and close to the expected mean valence $(+3)$ of Mg^{2+} and Ti^{4+}. The $\mathrm{B} 1 — \mathrm{O}$ distances of 1.353 (3)-1.395 (3) \AA agree well with those of isotypic $\mathrm{Co}_{3} M O_{2}\left(\mathrm{BO}_{3}\right)_{2}(M=\mathrm{Ti}, \mathrm{Zr}): 1.36(2)-$ 1.39 (2) Å (Utzolino \& Bluhm, 1995).

Warwickite-type $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ did not emit visible light under ultraviolet excitation at room temperature, while ludwigite-type $\mathrm{Mg}_{5} \mathrm{TiO}_{4}\left(\mathrm{BO}_{3}\right)_{2}$ shows broad blue emission (435 nm) attributed to charge transfer transitions between Ti^{4+} and O^{2-} (Konijnendijk \& Blasse, 1985).

S2. Experimental

Starting materials were powders of $\mathrm{MgO}\left(99.9 \%\right.$, Rare Metallic), $\mathrm{TiO}_{2}\left(99.9 \%\right.$, Rare Metallic) and $\mathrm{H}_{3} \mathrm{BO}_{3}(99.99 \%$, Sigma-Aldrich). MgO was heated at $1173-1273 \mathrm{~K}$ for $6-12 \mathrm{~h}$ in air before weighing. The powders were weighed with a molar ratio of $\mathrm{MgO}: \mathrm{TiO}_{2}: \mathrm{H}_{3} \mathrm{BO}_{3}=5: 1: 2.7$ and mixed in an agate mortar with a pestle. The mixture was pressed into a pellet, placed in a Pt boat and heated at 1623 K for 6 h in air. Heating and cooling rates were 200 and $900 \mathrm{~K} / \mathrm{h}$, respectively. About 400 mg of the sample and 100 mg of $\mathrm{H}_{3} \mathrm{BO}_{3}$ were weighed and mixed. The mixture in the Pt boat was heated at 1723 K for 3 h in air and cooled to room temperature at a cooling rate of $900 \mathrm{~K} / \mathrm{h}$. The obtained sample was crushed into fragments and a colourless and transparent single-crystal of about $0.12-0.17 \mathrm{~mm}$ was picked up under an optical microscope.

S3. Refinement

The crystal structures of natural warwickites were described in the space group Pnam (no. 62) in the previous studies (Takéuchi et al., 1950; Moore \& Araki, 1974). The original single-crystal X-ray diffraction data in the present study were indexed in a different setting in space group Pmnb and unit-cell parameters of $a=3.10080$ (14), $b=9.3013$ (5) and $c=$ 9.3914 (6) \AA. Structure parameters were eventually standardized based on the standard setting of the space group Pnma using the STRUCTURE TIDY program (Gelato \& Parthé, 1987). In the final refinement, site occupation factors (s.o.f.'s) of the Ti and Mg atoms at the $\mathrm{Ti} 1 / \mathrm{Mg} 1$ and Mg 2 sites were fixed to $0.5 / 0.5$ and 1.0 , respectively, since the freely refined s.o.f.'s of the Ti and Mg atoms at the $\mathrm{Ti} 1 / \mathrm{Mg} 1$ site were close to $1 / 2$, and the s.o.f. of the Mg atom at the Mg 2 site was about 1.0 . The highest peak in the difference electron density map is $0.36 \AA$ from O2 while the deepest hole is $-0.59 \AA$ from Ti1/Mg1.

Figure 1
The atomic arrangement around $\mathrm{Mg}, \mathrm{Ti}, \mathrm{B}$ and O atoms in the structure of $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$. Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes: (i) $-x+1 / 2,-y, z-1 / 2$; (ii) $-x+1 / 2,-y+1, z-1 / 2$; (iii) $x-1 / 2, y,-z+$ $1 / 2$; (iv) $-x,-y,-z+1$; (v) $-x,-y+1,-z+1$; (vi) $x-1 / 2, y,-z+3 / 2$; (vii) $-x+1 / 2,-y+1, z+1 / 2$; (viii) $-x+1 / 2,-y, z+$ $1 / 2$.

Figure 2
The crystal structure of $\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ in a representation using cation-centred oxygen polyhedra.

trimagnesium titanium(IV) dioxide bis(borate)

Crystal data

$\mathrm{Mg}_{3} \mathrm{TiO}_{2}\left(\mathrm{BO}_{3}\right)_{2}$
$M_{r}=270.45$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=9.3013$ (5) \AA
$b=3.10080(14) \AA$
$c=9.3914(6) \AA$
$V=270.86(3) \AA^{3}$
$Z=2$
$F(000)=264$
$D_{\mathrm{x}}=3.316 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2288 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=1.94 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.17 \times 0.17 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID II
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
ω scans
Absorption correction: numerical
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.791, T_{\text {max }}=0.839$
2510 measured reflections
364 independent reflections
348 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.070$
$S=1.20$
364 reflections
44 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-12 \rightarrow 11 \\
& k=-3 \rightarrow 3 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0347 P)^{2}+0.3981 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}_{\AA^{-3}}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.039 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Ti1	$0.11388(7)$	0.2500	$0.07167(7)$	$0.0115(3)$	0.50
Mg1	$0.11388(7)$	0.2500	$0.07167(7)$	$0.0115(3)$	0.50
Mg2	$0.10160(8)$	0.2500	$0.68497(9)$	$0.0055(3)$	
B1	$0.1708(3)$	0.2500	$0.3719(3)$	$0.0061(5)$	
O1	$0.24045(19)$	0.2500	$0.50344(18)$	$0.0088(4)$	
O2	$0.25030(18)$	0.2500	$0.24622(19)$	$0.0078(4)$	
O3	$0.0255(2)$	0.2500	$0.36441(19)$	$0.0100(4)$	
O4	$0.5095(2)$	0.2500	$0.61439(18)$	$0.0100(4)$	

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti1	$0.0148(4)$	$0.0079(4)$	$0.0119(4)$	0.000	$-0.0015(2)$	0.000
Mg 1	$0.0148(4)$	$0.0079(4)$	$0.0119(4)$	0.000	$-0.0015(2)$	0.000
Mg 2	$0.0040(4)$	$0.0045(5)$	$0.0079(4)$	0.000	$0.0001(3)$	0.000
B1	$0.0069(12)$	$0.0038(13)$	$0.0077(12)$	0.000	$-0.0013(9)$	0.000
O1	$0.0071(8)$	$0.0139(10)$	$0.0054(7)$	0.000	$-0.0006(6)$	0.000
O2	$0.0085(8)$	$0.0090(9)$	$0.0058(7)$	0.000	$0.0004(6)$	0.000
O3	$0.0063(9)$	$0.0095(10)$	$0.0143(9)$	0.000	$-0.0017(7)$	0.000
O4	$0.0102(9)$	$0.0128(10)$	$0.0071(8)$	0.000	$-0.0020(6)$	0.000

Geometric parameters (A, ${ }^{\circ}$)

Ti1-O4 ${ }^{\text {i }}$	1.9702 (12)	Mg2-O4 ${ }^{\text {x }}$	2.0698 (19)
Ti1-O4i ${ }^{\text {i }}$	1.9702 (12)	$\mathrm{Mg} 2-\mathrm{O} 1$	2.1387 (19)
Til-O4iii	1.9989 (19)	$\mathrm{Mg} 2-\mathrm{O} 2^{\text {xi }}$	2.1522 (13)
Ti1-O2	2.0730 (18)	$\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	2.1522 (13)
Ti1- $\mathrm{Ol}^{\text {ii }}$	2.1565 (13)	$\mathrm{Mg} 2-\mathrm{Mg} 2^{\text {vi }}$	3.1008 (1)
Ti1-O1 ${ }^{\text {i }}$	2.1565 (13)	$\mathrm{Mg} 2-\mathrm{Mg} 2^{\text {vii }}$	3.1008 (1)
Til-Ti1 ${ }^{\text {iv }}$	2.9502 (11)	Mg2- $\mathrm{Ti1}^{\text {xi }}$	3.2465 (9)
Ti1-Mg1 ${ }^{\text {iv }}$	2.9502 (11)	$\mathrm{Mg} 2-\mathrm{Mg} 1^{\text {xi }}$	3.2465 (9)
Til- Til v	2.9502 (11)	Mg 2 - $\mathrm{Ti} 1^{\text {xii }}$	3.2465 (9)
Ti1-Mg1 ${ }^{\text {v }}$	2.9502 (11)	$\mathrm{Mg} 2-\mathrm{Mg} 1^{\text {xii }}$	3.2465 (9)
Til-Ti1 ${ }^{\text {vi }}$	3.1008 (1)	B1-O3	1.353 (3)
Til-Ti1 ${ }^{\text {vii }}$	3.1008 (1)	B1-O2	1.393 (3)
$\mathrm{Mg} 2-\mathrm{O} 3^{\text {viii }}$	2.0043 (12)	B1-O1	1.395 (3)
Mg2-O3 ${ }^{\text {ix }}$	2.0043 (12)		
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Ti} 1-\mathrm{O} 4^{\text {ii }}$	103.80 (9)	$\mathrm{Mg} 2-\mathrm{O} 1-\mathrm{Ti} 1^{\text {xi }}$	98.20 (6)
O4-Til-O4iii	83.98 (6)	B1-O1-Ti1 ${ }^{\text {xii }}$	123.71 (9)
$\mathrm{O} 44^{\text {ii- }}$ Til- $4^{\text {iii }}$	83.98 (6)	$\mathrm{Mg} 2-\mathrm{O}-\mathrm{Ti} 1^{\text {xii }}$	98.20 (6)
O4i-Ti1-O2	101.28 (6)	$\mathrm{Mg} 1^{\mathrm{xi}}-\mathrm{O} 1-\mathrm{Ti1}{ }^{\text {xii }}$	91.94 (7)
$\mathrm{O} 4 i-\mathrm{Ti} 1-\mathrm{O} 2$	101.28 (6)	Ti1 ${ }^{\text {xi }}-\mathrm{O} 1-\mathrm{Ti} 1^{\text {xii }}$	91.94 (7)
$\mathrm{O} 4{ }^{\text {iii- }}$-Ti1-O2	171.31 (8)	$\mathrm{B} 1-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xii }}$	123.71 (9)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Ti} 1-\mathrm{Ol}^{\text {ii }}$	172.87 (6)	$\mathrm{Mg} 2-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xii }}$	98.20 (6)
$\mathrm{O} 44^{\text {ii- }}$ Til- $\mathrm{Ol}^{\text {ii }}$	82.00 (5)	$\mathrm{Mg1}{ }^{\text {xi}}-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xii }}$	91.94 (7)
O4iii-Til-O1 ${ }^{\text {ii }}$	92.60 (6)	Ti1 ${ }^{\text {xi }}-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xii }}$	91.94 (7)
$\mathrm{O} 2-\mathrm{Til}-\mathrm{Ol}^{\text {ii }}$	81.39 (6)	B1-O2-Ti1	110.19 (15)
O4i-Til- $\mathrm{Ol}^{\text {i }}$	82.00 (5)	$\mathrm{B} 1-\mathrm{O} 2-\mathrm{Mg} 2^{\text {ii }}$	124.49 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Til}-\mathrm{Ol}^{\text {i }}$	172.87 (6)	Ti1-O2-Mg2ii	100.40 (6)
$\mathrm{O} 4{ }^{\text {iii- }}$ - $\mathrm{Ti} 1-\mathrm{Ol}^{\text {i }}$	92.60 (6)	$\mathrm{B} 1-\mathrm{O} 2-\mathrm{Mg} 2^{\text {i }}$	124.49 (8)
O2-Til-O1 ${ }^{\text {i }}$	81.39 (6)	Til-O2-Mg2 ${ }^{\text {i }}$	100.40 (6)
$\mathrm{Ol} 1^{\text {ii- }} \mathrm{Til}-\mathrm{Ol}^{\text {i }}$	91.94 (7)	$\mathrm{Mg} 2{ }^{\text {ii- }}$ - 2 2- ${\mathrm{Mg} 22^{\mathrm{i}}}^{\text {a }}$	92.17 (7)
$\mathrm{O} 3^{\text {viii }}-\mathrm{Mg} 2-\mathrm{O} 3^{\text {ix }}$	101.34 (9)	$\mathrm{B} 1-\mathrm{O}-\mathrm{Mg}^{\text {viii }}$	126.96 (6)
$\mathrm{O} 3^{\text {viii }}-\mathrm{Mg} 2-\mathrm{O} 4^{\text {x }}$	88.08 (6)	$\mathrm{B} 1-\mathrm{O} 3-\mathrm{Mg} 2{ }^{\text {ix }}$	126.96 (6)
O3 $3^{\text {ix }}-\mathrm{Mg} 2-\mathrm{O} 4^{\text {x }}$	88.08 (6)	Mg2 ${ }^{\text {viii- }}$ O3-Mg2 ${ }^{\text {ix }}$	101.34 (9)
O3viii-Mg2-O1	99.89 (7)	$\mathrm{Mg1}{ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Mg}^{\text {xi }}$	103.80 (9)
$\mathrm{O} 3^{\text {ix }}-\mathrm{Mg} 2-\mathrm{O} 1$	99.89 (7)	Ti1 ${ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Mg} 1^{\text {xi }}$	103.80 (9)
O4x - Mg2-O1	167.30 (8)	$\mathrm{Mg} 1^{\text {xii }}$ - $\mathrm{O} 4-\mathrm{Ti}^{\text {xi }}$	103.80 (9)
$\mathrm{O} 3{ }^{\text {viii }}-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xi }}$	175.34 (6)	Ti1 ${ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Ti}^{11^{\text {x }}}$	103.80 (9)
$\mathrm{O} 3^{\mathrm{ix}}-\mathrm{Mg} 2-\mathrm{O} 2^{\mathrm{xi}}$	83.24 (5)	$\mathrm{Mg1}{ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Mg} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 4^{\times}-\mathrm{Mg} 2-\mathrm{O}^{\text {xi }}$	91.24 (6)	Ti1 ${ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Mg} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 1-\mathrm{Mg} 2-\mathrm{O}^{\text {xi }}$	80.01 (6)	$\mathrm{Mg1}{ }^{\text {xi}}-\mathrm{O} 4-\mathrm{Mg} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 3^{\text {viii }}-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	83.24 (5)	Ti1 ${ }^{\text {xi }}-\mathrm{O} 4-\mathrm{Mg} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 3{ }^{\text {ix }}-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	175.34 (6)	$\mathrm{Mg}{ }^{\text {xii }}$ - $\mathrm{O} 4-\mathrm{Ti1}{ }^{\text {xii }}$	96.02 (6)
$\mathrm{O} 4 \times-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	91.24 (6)	Ti1 ${ }^{\text {xii }}-\mathrm{O} 4-\mathrm{Ti} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 1-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	80.01 (6)	$\mathrm{Mg} 1^{\text {xi- }}$ - $04-\mathrm{Ti} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 22^{\mathrm{xi}}-\mathrm{Mg} 2-\mathrm{O} 2^{\text {xii }}$	92.17 (7)	$\mathrm{Ti} 1^{\text {xi }}-\mathrm{O} 4-\mathrm{Ti} 1^{\text {xiii }}$	96.02 (6)
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 2$	119.1 (2)	$\mathrm{g} \mathrm{x}^{\text {xii }}-\mathrm{O} 4-\mathrm{Mg}^{2}{ }^{\text {xiv }}$	115.24 (6)

supporting information

$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 1$	$120.7(2)$
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 1$	$120.3(2)$
$\mathrm{B} 1-\mathrm{O} 1-\mathrm{Mg} 2$	$115.18(15)$
$\mathrm{B} 1-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xi }}$	$123.71(9)$
$\mathrm{Mg} 2-\mathrm{O} 1-\mathrm{Mg} 1^{\text {xi }}$	$98.20(6)$
$\mathrm{B} 1-\mathrm{O} 1-\mathrm{Ti} 1^{\text {xi }}$	$123.71(9)$

$\mathrm{Ti} 1^{\text {xii }}-\mathrm{O} 4 — \mathrm{Mg} 2^{\text {xiv }}$	$115.24(6)$
$\mathrm{Mg} 1^{\text {xi }}-\mathrm{O} 4 — \mathrm{Mg} 2^{\text {xiv }}$	$115.24(6)$
$\mathrm{Ti} 1^{\mathrm{xi}}-\mathrm{O} 4 — \mathrm{Mg} 2^{\text {xiv }}$	$115.24(6)$
$\mathrm{Mg} 1^{\text {xiii }}-\mathrm{O} 4 — \mathrm{Mg}^{\text {xiv }}$	$126.50(10)$
$\mathrm{Ti}^{\text {xiii }}-\mathrm{O} 4 — \mathrm{Mg} 2^{\text {xiv }}$	$126.50(10)$

Symmetry codes: (i) $-x+1 / 2,-y, z-1 / 2$; (ii) $-x+1 / 2,-y+1, z-1 / 2$; (iii) $x-1 / 2, y,-z+1 / 2$; (iv) $-x,-y,-z$; (v) $-x,-y+1,-z$; (vi) $x, y+1, z$; (vii) $x, y-1, z$; (viii) $-x,-y,-z+1$; (ix) $-x,-y+1,-z+1$; (x) $x-1 / 2, y,-z+3 / 2$; (xi) $-x+1 / 2,-y+1, z+1 / 2$; (xii) $-x+1 / 2,-y, z+1 / 2$; (xiii) $x+1 / 2, y,-z+1 / 2$; (xiv) $x+1 / 2, y,-z+3 / 2$.

[^0]: Supplementary data and figures for this paper are available from the

