metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m248-m249

(2,2′-Bi­pyridine)(pyridine-2,6-di­carboxyl­ato)oxidovanadium(IV) ethanol monosolvate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran
*Correspondence e-mail: haghabozorg@yahoo.com, mirzaei487@yahoo.com

(Received 8 January 2011; accepted 17 January 2011; online 22 January 2011)

In the title compound, [V(C7H3NO4)O(C10H8N2)]·C2H5OH, the VIV atom exhibits a distorted octa­hedral coordination environment formed by two pyridyl N atoms of 2,2′-bipyridine (bpy), the vanadyl O atom, and two carboxyl­ate O atoms and one pyridyl N atom of the tridentate pyridine-2,6-dicarboxyl­ate (pydc2−) ligand. The pyridyl N atom of the pydc2− anion and one pyridyl N atom of bpy occupy the axial positions. O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecule as donor and a carboxyl­ate O atom as acceptor atoms, as well as C—H⋯O hydrogen bonds, together with ππ stacking inter­actions between adjacent aromatic rings (average centroid–centroid distance = 3.577 Å), seem to be effective in the stabilization of the crystal packing, resulting in the formation of a three-dimensional structure.

Related literature

For general background to proton-transfer compounds and their complexes, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures with VIV, see: Therrien et al. (2002[Therrien, B., Stanislas, S., Stoeckli-Evans, H., Shul'pin, G. B. & Süss-Fink, G. (2002). Acta Cryst. E58, m215-m216.]); Okabe & Muranishi (2002[Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287-m289.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C7H3NO4)O(C10H8N2)]·C2H6O

  • Mr = 434.30

  • Monoclinic, C 2/c

  • a = 23.246 (2) Å

  • b = 11.2179 (10) Å

  • c = 13.9440 (16) Å

  • β = 97.247 (9)°

  • V = 3607.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 296 K

  • 0.27 × 0.23 × 0.02 mm

Data collection
  • Stoe IPDS II Image Plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.864, Tmax = 1.000

  • 7321 measured reflections

  • 2959 independent reflections

  • 2124 reflections with I > 2I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.03

  • 2959 reflections

  • 263 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

V1—O5 1.586 (3)
V1—N3 2.020 (3)
V1—O1 2.021 (3)
V1—O2 2.035 (3)
V1—N1 2.130 (3)
V1—N2 2.304 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4i 0.82 2.00 2.815 (6) 173
C1—H1⋯O6ii 0.93 2.50 3.216 (7) 134
C4—H4⋯O1iii 0.93 2.47 3.207 (6) 137
C9—H9⋯O6iv 0.93 2.50 3.220 (9) 135
C12—H12⋯O5v 0.93 2.46 3.374 (5) 166
C14—H14⋯O5vi 0.93 2.52 3.146 (6) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,2'-Bipyridine (bipy) is a bidentate chelating ligand, forming complexes with many transition metals. Ruthenium and platinum complexes of bipy exhibit intense luminescence, which may have practical applications. In continuation of previous works containing VIVcomplexes and various basic ligands (Aghabozorg et al., 2008; Therrien et al., 2002; Okabe & Muranishi, 2002), we report preparation and the crystal structure of the title compound, [VO(C10H8N2)(C7H3NO4)].C2H5OH, (I).

In the structure of compound (I) the VIV atom has a distorted octahedral coordination environment formed by two pyridyl N atoms of 2,2'-bipyridine (C10H8N2 or bpy), one O atom of the vanadyl group, and two carboxylate O atoms and one pyridyl N atom of the tridentate pyridine-2,6-dicarboxylate (C7H3NO4 or pydc2-) ligand. The pyridyl N3 atom of pydc2- and the pyridyl N1 atom of bpy occupy the axial position (Fig. 1). In the crystalline network of (I), O—H···O hydrogen bonds involving the ethanol solvent and C—H···O hydrogen bonds, together with ππ stacking interactions between adjacent aromatic rings [average centroid-to-centroid distance 3.577 Å], seem to be effective in the stabilization of the crystal packing, resulting in the formation of a three-dimensional structure. In this network, layers of pydc2- and bpy are alternatingly repeated in the bc plane (Fig. 2).

Related literature top

For general background to proton-transfer compounds and their complexes, see: Aghabozorg et al. (2008). For related structures with VIV, see: Therrien et al. (2002); Okabe & Muranishi (2002).

Experimental top

The reaction of vanadiumIII chloride (78 mg, 0.5 mmol), bpy (156 mg, 1 mmol) and pydcH2 (167 mg, 1 mmol) in a 1:2:2 molar ratio in ethanolic/aqueous solution resulted in the formation of green platy [VO(bpy)(pydc)].C2H5OH crystals.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97Å and constrained to refine with the parent atoms with Uiso(H) = 1.2 (aromatic and methylene H atoms) or 1.5 (methyl H atoms) Ueq(C), except for the H atom of the ethanol hydroxy group which was positioned under consideration of a rotating O—H group with Uiso(H) = 1.5 Ueq(O) and O—H = 0.82 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. The intermolecular classical O—H···O and non-classical C—H···O hydrogen bonds are shown as dashed lines.
(2,2'-Bipyridine)(pyridine-2,6-dicarboxylato)oxidovanadium(IV) ethanol monosolvate top
Crystal data top
[V(C7H3NO4)O(C10H8N2)]·C2H6OF(000) = 1784
Mr = 434.30Dx = 1.599 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2000 reflections
a = 23.246 (2) Åθ = 1.7–29.6°
b = 11.2179 (10) ŵ = 0.60 mm1
c = 13.9440 (16) ÅT = 296 K
β = 97.247 (9)°Plate, green
V = 3607.1 (6) Å30.27 × 0.23 × 0.02 mm
Z = 8
Data collection top
Stoe IPDS II Image Plate
diffractometer
2959 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2˘I)
Graphite monochromatorRint = 0.063
Detector resolution: 0.15 mm pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 2727
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
k = 1311
Tmin = 0.864, Tmax = 1.000l = 1616
7321 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0798P)2]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.40 e Å3
18 restraintsΔρmin = 0.47 e Å3
Crystal data top
[V(C7H3NO4)O(C10H8N2)]·C2H6OV = 3607.1 (6) Å3
Mr = 434.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.246 (2) ŵ = 0.60 mm1
b = 11.2179 (10) ÅT = 296 K
c = 13.9440 (16) Å0.27 × 0.23 × 0.02 mm
β = 97.247 (9)°
Data collection top
Stoe IPDS II Image Plate
diffractometer
2959 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
2124 reflections with I > 2˘I)
Tmin = 0.864, Tmax = 1.000Rint = 0.063
7321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05818 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
2959 reflectionsΔρmin = 0.47 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.62729 (3)0.30154 (6)0.11171 (5)0.0319 (2)
O10.64617 (13)0.2637 (3)0.2539 (2)0.0460 (8)
O20.62335 (12)0.2534 (3)0.0297 (2)0.0407 (7)
O30.70520 (19)0.1657 (4)0.3648 (2)0.0789 (13)
O40.67163 (17)0.1626 (4)0.1379 (2)0.0663 (11)
O50.66057 (13)0.4245 (3)0.1080 (2)0.0495 (9)
N10.54682 (14)0.3905 (3)0.1173 (2)0.0336 (8)
N20.55688 (14)0.1580 (3)0.1169 (3)0.0365 (9)
N30.68851 (13)0.1735 (3)0.1134 (2)0.0324 (8)
C10.5446 (2)0.5111 (4)0.1194 (3)0.0441 (11)
H10.57870.55430.11830.053*
C20.4937 (2)0.5712 (5)0.1233 (4)0.0531 (13)
H20.49370.65400.12510.064*
C30.4433 (2)0.5103 (5)0.1243 (4)0.0588 (14)
H30.40850.55070.12640.071*
C40.44461 (19)0.3875 (5)0.1222 (4)0.0518 (13)
H40.41060.34400.12280.062*
C50.49684 (16)0.3294 (4)0.1192 (3)0.0353 (10)
C60.50287 (17)0.1984 (4)0.1193 (3)0.0356 (10)
C70.45626 (19)0.1219 (4)0.1245 (3)0.0479 (12)
H70.41910.15200.12570.057*
C80.4662 (2)0.0011 (5)0.1280 (4)0.0551 (14)
H80.43560.05150.13170.066*
C90.5213 (2)0.0420 (5)0.1261 (4)0.0559 (14)
H90.52860.12350.12830.067*
C100.5657 (2)0.0393 (4)0.1206 (4)0.0474 (12)
H100.60310.01060.11950.057*
C110.71366 (17)0.1325 (4)0.1987 (3)0.0374 (10)
C120.7551 (2)0.0444 (5)0.2017 (4)0.0528 (13)
H120.77310.01580.26060.063*
C130.7693 (2)0.0006 (5)0.1154 (4)0.0547 (13)
H130.79730.06000.11610.066*
C140.74242 (18)0.0421 (4)0.0280 (4)0.0456 (11)
H140.75190.01220.03020.055*
C150.70108 (16)0.1302 (4)0.0292 (3)0.0331 (10)
C160.6882 (2)0.1901 (5)0.2804 (3)0.0477 (12)
C170.66328 (19)0.1852 (4)0.0549 (3)0.0418 (11)
C180.1764 (7)0.2303 (15)0.0306 (11)0.223 (7)
H18D0.21050.27750.02740.334*
H18B0.14810.24870.02360.334*
H18C0.18630.14730.02900.334*
C190.1528 (6)0.2564 (11)0.1197 (11)0.165 (5)
H19C0.18740.23800.16350.199*
H19B0.15370.34260.11450.199*
O60.1146 (3)0.2505 (6)0.1859 (5)0.117 (2)
H60.13100.27040.23900.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0293 (3)0.0323 (4)0.0341 (4)0.0005 (3)0.0042 (3)0.0012 (3)
O10.0457 (16)0.058 (2)0.0345 (17)0.0043 (15)0.0067 (14)0.0067 (15)
O20.0434 (16)0.0462 (18)0.0318 (16)0.0035 (14)0.0016 (13)0.0045 (14)
O30.103 (3)0.100 (3)0.0302 (18)0.021 (3)0.005 (2)0.004 (2)
O40.086 (3)0.083 (3)0.0307 (18)0.014 (2)0.0110 (18)0.0029 (18)
O50.0442 (16)0.041 (2)0.066 (2)0.0103 (14)0.0161 (16)0.0047 (16)
N10.0356 (17)0.036 (2)0.0289 (18)0.0011 (15)0.0032 (15)0.0021 (16)
N20.0412 (19)0.033 (2)0.036 (2)0.0059 (15)0.0083 (16)0.0016 (16)
N30.0299 (15)0.034 (2)0.0332 (19)0.0005 (14)0.0027 (15)0.0007 (16)
C10.055 (3)0.040 (3)0.038 (3)0.001 (2)0.008 (2)0.001 (2)
C20.069 (3)0.041 (3)0.050 (3)0.020 (2)0.013 (3)0.006 (2)
C30.056 (3)0.064 (4)0.060 (3)0.028 (3)0.024 (3)0.025 (3)
C40.038 (2)0.067 (4)0.053 (3)0.006 (2)0.014 (2)0.024 (3)
C50.035 (2)0.045 (3)0.026 (2)0.0034 (18)0.0040 (18)0.0083 (19)
C60.040 (2)0.043 (3)0.025 (2)0.006 (2)0.0081 (17)0.003 (2)
C70.043 (2)0.054 (3)0.047 (3)0.014 (2)0.007 (2)0.001 (2)
C80.060 (3)0.060 (4)0.046 (3)0.032 (3)0.011 (2)0.004 (3)
C90.075 (3)0.036 (3)0.056 (3)0.020 (2)0.008 (3)0.000 (2)
C100.051 (2)0.039 (3)0.053 (3)0.003 (2)0.008 (2)0.000 (2)
C110.037 (2)0.045 (3)0.030 (2)0.0020 (19)0.0022 (18)0.002 (2)
C120.051 (3)0.057 (3)0.048 (3)0.014 (2)0.003 (2)0.008 (3)
C130.046 (2)0.053 (3)0.066 (4)0.018 (2)0.011 (2)0.006 (3)
C140.049 (2)0.043 (3)0.049 (3)0.000 (2)0.024 (2)0.006 (2)
C150.0354 (19)0.036 (3)0.029 (2)0.0064 (18)0.0116 (17)0.0022 (19)
C160.051 (2)0.055 (3)0.036 (2)0.001 (2)0.001 (2)0.001 (2)
C170.046 (2)0.046 (3)0.034 (2)0.005 (2)0.008 (2)0.005 (2)
C180.265 (17)0.258 (19)0.143 (13)0.065 (15)0.017 (13)0.007 (12)
C190.201 (13)0.137 (10)0.160 (13)0.007 (10)0.031 (11)0.016 (10)
O60.092 (3)0.137 (5)0.116 (5)0.009 (3)0.002 (3)0.045 (4)
Geometric parameters (Å, º) top
V1—O51.586 (3)C6—C71.391 (6)
V1—N32.020 (3)C7—C81.375 (7)
V1—O12.021 (3)C7—H70.9300
V1—O22.035 (3)C8—C91.372 (8)
V1—N12.130 (3)C8—H80.9300
V1—N22.304 (3)C9—C101.386 (7)
O1—C161.297 (5)C9—H90.9300
O2—C171.286 (6)C10—H100.9300
O3—C161.225 (5)C11—C121.376 (6)
O4—C171.224 (6)C11—C161.495 (7)
N1—C51.353 (5)C12—C131.384 (7)
N1—C11.354 (5)C12—H120.9300
N2—C61.339 (5)C13—C141.383 (7)
N2—C101.347 (6)C13—H130.9300
N3—C151.336 (5)C14—C151.380 (6)
N3—C111.339 (5)C14—H140.9300
C1—C21.369 (7)C15—C171.506 (6)
C1—H10.9300C18—C191.451 (19)
C2—C31.359 (7)C18—H18D0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.377 (7)C18—H18C0.9600
C3—H30.9300C19—O61.359 (15)
C4—C51.384 (6)C19—H19C0.9700
C4—H40.9300C19—H19B0.9700
C5—C61.475 (6)O6—H60.8200
O5—V1—N3105.83 (15)C8—C7—H7120.6
O5—V1—O199.69 (15)C6—C7—H7120.6
N3—V1—O176.93 (13)C9—C8—C7119.9 (5)
O5—V1—O299.30 (16)C9—C8—H8120.0
N3—V1—O276.59 (12)C7—C8—H8120.0
O1—V1—O2150.73 (13)C8—C9—C10118.2 (5)
O5—V1—N191.59 (15)C8—C9—H9120.9
N3—V1—N1162.44 (14)C10—C9—H9120.9
O1—V1—N198.38 (13)N2—C10—C9122.8 (5)
O2—V1—N1103.14 (12)N2—C10—H10118.6
O5—V1—N2163.88 (15)C9—C10—H10118.6
N3—V1—N290.28 (13)N3—C11—C12120.0 (4)
O1—V1—N283.65 (13)N3—C11—C16111.0 (4)
O2—V1—N284.25 (13)C12—C11—C16129.0 (4)
N1—V1—N272.30 (13)C11—C12—C13118.6 (4)
C16—O1—V1118.4 (3)C11—C12—H12120.7
C17—O2—V1118.5 (3)C13—C12—H12120.7
C5—N1—C1118.1 (4)C14—C13—C12120.6 (4)
C5—N1—V1121.6 (3)C14—C13—H13119.7
C1—N1—V1120.3 (3)C12—C13—H13119.7
C6—N2—C10118.1 (4)C15—C14—C13118.3 (4)
C6—N2—V1115.8 (3)C15—C14—H14120.8
C10—N2—V1126.0 (3)C13—C14—H14120.8
C15—N3—C11122.4 (4)N3—C15—C14120.1 (4)
C15—N3—V1118.7 (3)N3—C15—C17111.4 (4)
C11—N3—V1118.9 (3)C14—C15—C17128.5 (4)
N1—C1—C2121.9 (5)O3—C16—O1123.8 (5)
N1—C1—H1119.1O3—C16—C11121.6 (4)
C2—C1—H1119.1O1—C16—C11114.5 (4)
C3—C2—C1120.3 (5)O4—C17—O2126.0 (4)
C3—C2—H2119.8O4—C17—C15120.3 (4)
C1—C2—H2119.8O2—C17—C15113.6 (4)
C2—C3—C4118.7 (4)C19—C18—H18D109.5
C2—C3—H3120.7C19—C18—H18B109.5
C4—C3—H3120.7H18D—C18—H18B109.5
C3—C4—C5119.6 (5)C19—C18—H18C109.5
C3—C4—H4120.2H18D—C18—H18C109.5
C5—C4—H4120.2H18B—C18—H18C109.5
N1—C5—C4121.4 (4)O6—C19—C18157.2 (13)
N1—C5—C6115.0 (4)O6—C19—H19C97.0
C4—C5—C6123.6 (4)C18—C19—H19C97.0
N2—C6—C7122.1 (4)O6—C19—H19B97.0
N2—C6—C5115.2 (4)C18—C19—H19B97.0
C7—C6—C5122.7 (4)H19C—C19—H19B103.5
C8—C7—C6118.8 (5)C19—O6—H6109.5
O5—V1—O1—C1698.6 (3)V1—N1—C5—C4179.6 (3)
N3—V1—O1—C165.5 (3)C1—N1—C5—C6178.4 (4)
O2—V1—O1—C1631.2 (5)V1—N1—C5—C61.3 (5)
N1—V1—O1—C16168.3 (3)C3—C4—C5—N10.7 (7)
N2—V1—O1—C1697.3 (3)C3—C4—C5—C6178.4 (4)
O5—V1—O2—C1793.9 (3)C10—N2—C6—C70.6 (6)
N3—V1—O2—C1710.3 (3)V1—N2—C6—C7178.7 (3)
O1—V1—O2—C1735.9 (5)C10—N2—C6—C5177.5 (4)
N1—V1—O2—C17172.2 (3)V1—N2—C6—C50.6 (5)
N2—V1—O2—C17101.9 (3)N1—C5—C6—N20.3 (5)
O5—V1—N1—C5178.2 (3)C4—C5—C6—N2179.5 (4)
N3—V1—N1—C58.7 (6)N1—C5—C6—C7177.7 (4)
O1—V1—N1—C581.7 (3)C4—C5—C6—C71.4 (7)
O2—V1—N1—C578.3 (3)N2—C6—C7—C80.4 (7)
N2—V1—N1—C51.2 (3)C5—C6—C7—C8177.5 (4)
O5—V1—N1—C12.1 (3)C6—C7—C8—C90.2 (8)
N3—V1—N1—C1171.0 (4)C7—C8—C9—C100.1 (8)
O1—V1—N1—C198.0 (3)C6—N2—C10—C90.5 (7)
O2—V1—N1—C1102.0 (3)V1—N2—C10—C9178.4 (4)
N2—V1—N1—C1178.5 (3)C8—C9—C10—N20.2 (8)
O5—V1—N2—C61.2 (7)C15—N3—C11—C121.5 (6)
N3—V1—N2—C6178.7 (3)V1—N3—C11—C12179.3 (3)
O1—V1—N2—C6101.8 (3)C15—N3—C11—C16175.6 (4)
O2—V1—N2—C6104.9 (3)V1—N3—C11—C162.2 (5)
N1—V1—N2—C60.9 (3)N3—C11—C12—C130.6 (7)
O5—V1—N2—C10179.1 (5)C16—C11—C12—C13175.9 (5)
N3—V1—N2—C100.7 (4)C11—C12—C13—C140.1 (8)
O1—V1—N2—C1076.1 (4)C12—C13—C14—C150.1 (7)
O2—V1—N2—C1077.2 (4)C11—N3—C15—C141.7 (6)
N1—V1—N2—C10177.0 (4)V1—N3—C15—C14179.5 (3)
O5—V1—N3—C1589.6 (3)C11—N3—C15—C17175.4 (4)
O1—V1—N3—C15173.8 (3)V1—N3—C15—C172.4 (4)
O2—V1—N3—C156.4 (3)C13—C14—C15—N31.0 (6)
N1—V1—N3—C1597.6 (5)C13—C14—C15—C17175.6 (4)
N2—V1—N3—C1590.4 (3)V1—O1—C16—O3176.1 (4)
O5—V1—N3—C1192.5 (3)V1—O1—C16—C116.0 (5)
O1—V1—N3—C114.1 (3)N3—C11—C16—O3179.7 (5)
O2—V1—N3—C11171.5 (3)C12—C11—C16—O33.6 (8)
N1—V1—N3—C1180.3 (5)N3—C11—C16—O12.4 (6)
N2—V1—N3—C1187.5 (3)C12—C11—C16—O1174.4 (5)
C5—N1—C1—C20.1 (6)V1—O2—C17—O4168.8 (4)
V1—N1—C1—C2179.8 (4)V1—O2—C17—C1511.9 (5)
N1—C1—C2—C30.5 (8)N3—C15—C17—O4174.6 (4)
C1—C2—C3—C40.5 (8)C14—C15—C17—O48.6 (7)
C2—C3—C4—C50.1 (8)N3—C15—C17—O26.1 (5)
C1—N1—C5—C40.7 (6)C14—C15—C17—O2170.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.822.002.815 (6)173
C1—H1···O6ii0.932.503.216 (7)134
C4—H4···O1iii0.932.473.207 (6)137
C9—H9···O6iv0.932.503.220 (9)135
C12—H12···O5v0.932.463.374 (5)166
C14—H14···O5vi0.932.523.146 (6)125
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z; (v) x+3/2, y1/2, z+1/2; (vi) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[V(C7H3NO4)O(C10H8N2)]·C2H6O
Mr434.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.246 (2), 11.2179 (10), 13.9440 (16)
β (°) 97.247 (9)
V3)3607.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.27 × 0.23 × 0.02
Data collection
DiffractometerStoe IPDS II Image Plate
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2˘I)] reflections
7321, 2959, 2124
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.144, 1.03
No. of reflections2959
No. of parameters263
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.47

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
V1—O51.586 (3)V1—O22.035 (3)
V1—N32.020 (3)V1—N12.130 (3)
V1—O12.021 (3)V1—N22.304 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.822.002.815 (6)173
C1—H1···O6ii0.932.503.216 (7)134
C4—H4···O1iii0.932.473.207 (6)137
C9—H9···O6iv0.932.503.220 (9)135
C12—H12···O5v0.932.463.374 (5)166
C14—H14···O5vi0.932.523.146 (6)125
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z; (v) x+3/2, y1/2, z+1/2; (vi) x+3/2, y+1/2, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationOkabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTherrien, B., Stanislas, S., Stoeckli-Evans, H., Shul'pin, G. B. & Süss-Fink, G. (2002). Acta Cryst. E58, m215–m216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m248-m249
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds