organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-4-[4-Cyano-2-(hy­dr­oxy­meth­yl)phen­yl]-4-(4-fluoro­phen­yl)-4-hy­dr­oxy-N,N-di­methyl­butanaminium hemifumarate

aHainan Provincial Key Laboratory of Tropical Pharmaceutical Herb Chemistry, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
*Correspondence e-mail: enjuwang@163.com

(Received 21 November 2010; accepted 26 December 2010; online 8 January 2011)

In the title salt, C20H24FN2O2+·0.5C4H2O42−, the fumarate anion is located on an inversion centre. In the cation, the two benzene rings are nearly perpendicular to each other, making a dihedral angle of 87.41 (10)°. The cation is linked to the anion by a bifurcated N—H⋯O hydrogen bond. Classical O—H⋯O and weak C—H⋯F hydrogen bonding is also present in the crystal structure. Three C atoms of the N,N-dimethyl­butanaminium moiety are disordered over two sites with refined site occupancies of 0.466 (14) and 0.534 (14).

Related literature

For a pharmacological study of the title compound, see: Pollock (2001[Pollock, B. G. (2001). Expert Opin. Pharmacother. 2, 681-698.]). For the synthesis, see: Boegeso (1987[Boegeso, K. P. (1987). US Patent 4 650 884.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24FN2O2+·0.5C4H2O42−

  • Mr = 400.44

  • Triclinic, [P \overline 1]

  • a = 8.3312 (9) Å

  • b = 8.8372 (11) Å

  • c = 15.0396 (13) Å

  • α = 92.236 (1)°

  • β = 102.681 (2)°

  • γ = 107.508 (2)°

  • V = 1023.64 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.48 × 0.47 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 7766 measured reflections

  • 4381 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.158

  • S = 1.06

  • 4381 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.85 2.655 (2) 165
O2—H2⋯O3 0.82 1.85 2.642 (3) 162
N1—H1A⋯O4i 0.91 2.30 3.152 (3) 155
N1—H1A⋯O3i 0.91 2.04 2.834 (3) 145
C2—H2A⋯F1ii 0.93 2.48 3.392 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rac-4-[4-Cyano-2-(hydroxymethyl)phenyl]-4-(4-fluorophenyl)-4-hydroxy-N,N-dimethylbutan-1-amine, known as citalopram diol, is a useful intermediate in the synthesis of citalopram that is an efficient antidepressant (Pollock, 2001). Ordinarily both of them are viscous oil and are very difficult to be crystallized. It is a strategy to combine them with all sorts of acid, so that crystal salt can be obtained. The crystal structure of fumaric acid salt of citalopram diol is reported here.

In the title salt, (C20H24N2O2F) +.0.5(C4H2O4)2- (I) (Fig. 1), each carboxylic anion of the fumaric acid is involved in two hydrogen bonds and there is an inversion center at the centroid position of fumaric acid, which generate a double chain of citalopram diol linked by fumaric acid molecules (Fig.2). There is a C—H···π interaction between fluorobenzene moiety and benzonitrile moiety (Fig. 3). The dihedral angle between the two aromatic rings is 87.349 (7)°. The distance from H9 to the centroid of aromatic ring of benzonitrile moiety is 2.8372 (8) Å).

Related literature top

For the pharmacological study of the title compound, see: Pollock (2001). For the synthesis, see: Boegeso (1987).

Experimental top

The compound was prepared according to the method of patent (Boegeso, 1987). The crystals suitable for single X-ray diffraction were obtained by slowly volatilizing the solution of a mixture of citalopram diol and fumaric acid (2:1 molar ratio) in ethanol.

Refinement top

Hydroxyl H atoms and ammonium H atom were located in a difference Fourier maps and refined with constraints of N—H = 0.91 and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.93-0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others. The C16, C17 and C18 atoms were disordered over two sites, occupancies were refined to 0.466 (14):0.534 (14).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial packing diagram of (I), showing a double chain of citalopram diol linked by fumaric acid molecules. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. The partial packing diagram of (I), showing the C—H···π and C—H···F interactions. For clarity, some H atoms not involved in the motifs shown have been omitted.
rac-4-[4-Cyano-2-(hydroxymethyl)phenyl]-4-(4-fluorophenyl)-4-hydroxy- N,N-dimethylbutanaminium hemifumarate top
Crystal data top
C20H24FN2O2+·0.5C4H2O42Z = 2
Mr = 400.44F(000) = 424
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3312 (9) ÅCell parameters from 5256 reflections
b = 8.8372 (11) Åθ = 1.5–25.2°
c = 15.0396 (13) ŵ = 0.10 mm1
α = 92.236 (1)°T = 293 K
β = 102.681 (2)°Block, colourless
γ = 107.508 (2)°0.50 × 0.48 × 0.47 mm
V = 1023.64 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3071 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.1°, θmin = 1.4°
ϕ and ω scansh = 1010
7766 measured reflectionsk = 1111
4381 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4116P]
where P = (Fo2 + 2Fc2)/3
4381 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H24FN2O2+·0.5C4H2O42γ = 107.508 (2)°
Mr = 400.44V = 1023.64 (19) Å3
Triclinic, P1Z = 2
a = 8.3312 (9) ÅMo Kα radiation
b = 8.8372 (11) ŵ = 0.10 mm1
c = 15.0396 (13) ÅT = 293 K
α = 92.236 (1)°0.50 × 0.48 × 0.47 mm
β = 102.681 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3071 reflections with I > 2σ(I)
7766 measured reflectionsRint = 0.016
4381 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.06Δρmax = 0.80 e Å3
4381 reflectionsΔρmin = 0.29 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.20769 (19)0.79749 (15)0.86453 (10)0.0671 (4)
N10.2494 (2)0.04111 (19)0.61890 (12)0.0480 (4)
H1A0.23460.04520.58680.058*
N21.1468 (3)0.2082 (3)1.02194 (19)0.0865 (8)
O10.38654 (19)0.25106 (19)0.66277 (9)0.0536 (4)
H10.46880.32520.65620.080*
O20.6756 (2)0.4911 (2)0.67399 (11)0.0690 (5)
H20.72660.43580.65450.104*
O30.7715 (2)0.2781 (2)0.58894 (13)0.0765 (5)
O40.8536 (3)0.1944 (2)0.47374 (15)0.0906 (6)
C10.5496 (2)0.2512 (2)0.81662 (12)0.0382 (4)
C20.5520 (3)0.1242 (2)0.86801 (13)0.0450 (4)
H2A0.44720.04680.86710.054*
C30.7026 (3)0.1076 (2)0.92031 (14)0.0479 (5)
H30.69920.02020.95320.057*
C40.8584 (3)0.2230 (3)0.92298 (14)0.0482 (5)
C50.8597 (3)0.3513 (3)0.87273 (15)0.0505 (5)
H50.96540.42800.87450.061*
C60.7095 (2)0.3695 (2)0.82005 (13)0.0445 (4)
C70.3417 (2)0.4110 (2)0.78555 (12)0.0374 (4)
C80.3553 (2)0.4536 (2)0.87729 (13)0.0414 (4)
H80.39300.39250.92120.050*
C90.3138 (3)0.5849 (2)0.90451 (14)0.0460 (5)
H90.32410.61380.96610.055*
C100.2568 (3)0.6718 (2)0.83815 (15)0.0470 (5)
C110.2425 (3)0.6358 (2)0.74730 (15)0.0510 (5)
H110.20470.69780.70400.061*
C120.2858 (3)0.5040 (2)0.72121 (14)0.0477 (5)
H120.27730.47750.65950.057*
C130.3780 (2)0.2592 (2)0.75605 (12)0.0405 (4)
C140.2230 (2)0.1135 (2)0.75868 (15)0.0481 (5)
H14A0.24820.01700.74300.058*
H14B0.20640.11170.82050.058*
C150.0558 (3)0.1151 (3)0.69250 (17)0.0589 (6)
H15A0.00340.18120.72160.071*
H15B0.08340.16190.63830.071*
C160.0679 (8)0.0449 (7)0.6654 (7)0.0476 (17)0.466 (14)
H16A0.07370.10140.71920.057*0.466 (14)
H16B0.02790.10290.62350.057*0.466 (14)
C170.3573 (14)0.0310 (15)0.6699 (7)0.081 (3)0.466 (14)
H17A0.45800.01380.63230.121*0.466 (14)
H17B0.30050.05650.71740.121*0.466 (14)
H17C0.39190.12850.69710.121*0.466 (14)
C180.3287 (14)0.1936 (14)0.5463 (7)0.072 (2)0.466 (14)
H18A0.34570.28780.57740.109*0.466 (14)
H18B0.25060.19310.50780.109*0.466 (14)
H18C0.43800.19270.50930.109*0.466 (14)
C16'0.1003 (8)0.0176 (9)0.7010 (5)0.0522 (17)0.534 (14)
H16C0.13430.00730.75600.063*0.534 (14)
H16D0.07130.11570.70650.063*0.534 (14)
C17'0.4188 (10)0.0984 (12)0.6542 (6)0.0696 (19)0.534 (14)
H17D0.51740.10590.60510.104*0.534 (14)
H17E0.41260.02320.70370.104*0.534 (14)
H17F0.43040.20120.67550.104*0.534 (14)
C18'0.2597 (14)0.1404 (10)0.5439 (6)0.069 (2)0.534 (14)
H18D0.27040.24590.56090.104*0.534 (14)
H18E0.15660.10090.52190.104*0.534 (14)
H18F0.35920.14380.49640.104*0.534 (14)
C191.0189 (3)0.2131 (3)0.97840 (17)0.0611 (6)
C200.7315 (3)0.5186 (3)0.77151 (16)0.0566 (6)
H20A0.66730.58090.79360.068*
H20B0.85320.58230.78820.068*
C210.8499 (3)0.3012 (3)0.52575 (16)0.0546 (5)
C220.9421 (3)0.4749 (3)0.52195 (16)0.0596 (6)
H220.91210.55040.55380.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0795 (9)0.0485 (7)0.0819 (9)0.0300 (7)0.0234 (7)0.0074 (6)
N10.0391 (9)0.0413 (9)0.0524 (10)0.0045 (7)0.0009 (7)0.0088 (7)
N20.0497 (13)0.0901 (17)0.1124 (19)0.0268 (12)0.0048 (12)0.0306 (14)
O10.0550 (9)0.0639 (10)0.0372 (7)0.0175 (7)0.0052 (6)0.0027 (6)
O20.0677 (11)0.0855 (13)0.0646 (10)0.0316 (9)0.0234 (8)0.0325 (9)
O30.0687 (11)0.0924 (13)0.0771 (12)0.0283 (10)0.0276 (9)0.0315 (10)
O40.0964 (15)0.0679 (12)0.1023 (15)0.0192 (11)0.0256 (12)0.0067 (11)
C10.0357 (9)0.0409 (10)0.0369 (9)0.0136 (8)0.0053 (7)0.0006 (7)
C20.0382 (10)0.0433 (10)0.0497 (11)0.0112 (8)0.0050 (8)0.0046 (8)
C30.0468 (11)0.0455 (11)0.0516 (11)0.0182 (9)0.0067 (9)0.0084 (9)
C40.0384 (10)0.0575 (12)0.0504 (11)0.0216 (9)0.0056 (8)0.0052 (9)
C50.0344 (10)0.0556 (12)0.0601 (13)0.0113 (9)0.0117 (9)0.0112 (10)
C60.0399 (10)0.0489 (11)0.0454 (10)0.0149 (8)0.0103 (8)0.0078 (8)
C70.0307 (9)0.0386 (9)0.0388 (9)0.0088 (7)0.0031 (7)0.0043 (7)
C80.0360 (10)0.0474 (10)0.0397 (10)0.0149 (8)0.0038 (8)0.0082 (8)
C90.0408 (10)0.0527 (11)0.0425 (10)0.0142 (9)0.0078 (8)0.0018 (8)
C100.0416 (11)0.0369 (10)0.0616 (13)0.0114 (8)0.0122 (9)0.0057 (8)
C110.0540 (12)0.0461 (11)0.0522 (12)0.0184 (9)0.0066 (9)0.0152 (9)
C120.0507 (12)0.0506 (11)0.0388 (10)0.0158 (9)0.0048 (8)0.0082 (8)
C130.0369 (10)0.0442 (10)0.0367 (9)0.0123 (8)0.0026 (7)0.0021 (7)
C140.0384 (10)0.0422 (10)0.0552 (12)0.0099 (8)0.0015 (9)0.0037 (8)
C150.0396 (11)0.0547 (13)0.0701 (15)0.0084 (9)0.0033 (10)0.0108 (10)
C160.038 (3)0.049 (3)0.052 (4)0.015 (2)0.001 (2)0.001 (2)
C170.048 (5)0.092 (7)0.101 (6)0.020 (4)0.023 (4)0.013 (5)
C180.058 (5)0.082 (7)0.054 (4)0.004 (4)0.005 (4)0.011 (4)
C16'0.039 (3)0.059 (3)0.047 (3)0.006 (2)0.002 (2)0.009 (2)
C17'0.040 (4)0.073 (5)0.090 (5)0.007 (3)0.019 (3)0.006 (4)
C18'0.078 (6)0.059 (4)0.059 (3)0.006 (3)0.019 (4)0.012 (3)
C190.0466 (13)0.0629 (14)0.0733 (15)0.0206 (11)0.0077 (11)0.0161 (11)
C200.0431 (11)0.0581 (13)0.0661 (14)0.0117 (10)0.0120 (10)0.0216 (11)
C210.0453 (12)0.0589 (13)0.0558 (13)0.0126 (10)0.0071 (10)0.0225 (11)
C220.0566 (14)0.0654 (14)0.0569 (13)0.0211 (11)0.0096 (10)0.0180 (11)
Geometric parameters (Å, º) top
F1—C101.367 (2)C10—C111.362 (3)
N1—C171.323 (9)C11—C121.386 (3)
N1—C18'1.373 (8)C11—H110.9300
N1—C16'1.504 (5)C12—H120.9300
N1—C161.531 (6)C13—C141.534 (3)
N1—C17'1.566 (8)C14—C151.528 (3)
N1—C181.574 (10)C14—H14A0.9700
N1—H1A0.9100C14—H14B0.9700
N2—C191.136 (3)C15—C161.456 (6)
O1—C131.420 (2)C15—C16'1.500 (6)
O1—H10.8200C15—H15A0.9700
O2—C201.425 (3)C15—H15B0.9700
O2—H20.8200C16—H16A0.9700
O3—C211.257 (3)C16—H16B0.9700
O4—C211.214 (3)C17—H17A0.9600
C1—C21.391 (3)C17—H17B0.9600
C1—C61.414 (3)C17—H17C0.9600
C1—C131.540 (2)C18—H18A0.9600
C2—C31.378 (3)C18—H18B0.9600
C2—H2A0.9300C18—H18C0.9600
C3—C41.380 (3)C16'—H16C0.9700
C3—H30.9300C16'—H16D0.9700
C4—C51.386 (3)C17'—H17D0.9600
C4—C191.441 (3)C17'—H17E0.9600
C5—C61.384 (3)C17'—H17F0.9600
C5—H50.9300C18'—H18D0.9600
C6—C201.514 (3)C18'—H18E0.9600
C7—C121.386 (3)C18'—H18F0.9600
C7—C81.387 (3)C20—H20A0.9700
C7—C131.531 (3)C20—H20B0.9700
C8—C91.379 (3)C21—C221.506 (3)
C8—H80.9300C22—C22i1.269 (4)
C9—C101.372 (3)C22—H220.9300
C9—H90.9300
C17—N1—C18'134.8 (5)O1—C13—C1109.05 (15)
C17—N1—C16'93.0 (5)C7—C13—C1110.65 (14)
C18'—N1—C16'117.9 (5)C14—C13—C1112.41 (15)
C17—N1—C16119.4 (5)C15—C14—C13112.24 (17)
C18'—N1—C1692.2 (4)C15—C14—H14A109.2
C16'—N1—C1627.2 (2)C13—C14—H14A109.2
C17—N1—C17'24.3 (4)C15—C14—H14B109.2
C18'—N1—C17'110.8 (4)C13—C14—H14B109.2
C16'—N1—C17'106.5 (4)H14A—C14—H14B107.9
C16—N1—C17'128.0 (5)C16—C15—C16'27.9 (2)
C17—N1—C18111.7 (5)C16—C15—C14111.9 (3)
C18'—N1—C1823.5 (4)C16'—C15—C14112.9 (3)
C16'—N1—C18124.9 (6)C16—C15—H15A109.2
C16—N1—C18104.7 (5)C16'—C15—H15A83.4
C17'—N1—C1887.5 (4)C14—C15—H15A109.2
C17—N1—H1A106.8C16—C15—H15B109.2
C18'—N1—H1A92.0C16'—C15—H15B129.4
C16'—N1—H1A111.9C14—C15—H15B109.2
C16—N1—H1A106.8H15A—C15—H15B107.9
C17'—N1—H1A117.7C15—C16—N1111.9 (4)
C18—N1—H1A106.8C15—C16—H16A109.2
C13—O1—H1109.5N1—C16—H16A109.2
C20—O2—H2109.5C15—C16—H16B109.2
C2—C1—C6117.88 (17)N1—C16—H16B109.2
C2—C1—C13120.62 (16)H16A—C16—H16B107.9
C6—C1—C13121.48 (16)N1—C17—H17A109.5
C3—C2—C1123.02 (18)N1—C17—H17B109.5
C3—C2—H2A118.5N1—C17—H17C109.5
C1—C2—H2A118.5N1—C18—H18A109.5
C2—C3—C4118.84 (19)N1—C18—H18B109.5
C2—C3—H3120.6N1—C18—H18C109.5
C4—C3—H3120.6C15—C16'—N1111.1 (4)
C3—C4—C5119.35 (18)C15—C16'—H16C109.4
C3—C4—C19120.94 (19)N1—C16'—H16C109.4
C5—C4—C19119.7 (2)C15—C16'—H16D109.4
C6—C5—C4122.44 (19)N1—C16'—H16D109.4
C6—C5—H5118.8H16C—C16'—H16D108.0
C4—C5—H5118.8N1—C17'—H17D109.5
C5—C6—C1118.47 (18)N1—C17'—H17E109.5
C5—C6—C20116.23 (18)H17D—C17'—H17E109.5
C1—C6—C20125.30 (18)N1—C17'—H17F109.5
C12—C7—C8118.55 (17)H17D—C17'—H17F109.5
C12—C7—C13121.01 (16)H17E—C17'—H17F109.5
C8—C7—C13120.36 (16)N1—C18'—H18D109.5
C9—C8—C7121.12 (17)N1—C18'—H18E109.5
C9—C8—H8119.4H18D—C18'—H18E109.5
C7—C8—H8119.4N1—C18'—H18F109.5
C10—C9—C8118.15 (18)H18D—C18'—H18F109.5
C10—C9—H9120.9H18E—C18'—H18F109.5
C8—C9—H9120.9N2—C19—C4178.8 (3)
C11—C10—F1118.72 (18)O2—C20—C6115.10 (19)
C11—C10—C9123.02 (19)O2—C20—H20A108.5
F1—C10—C9118.24 (19)C6—C20—H20A108.5
C10—C11—C12118.06 (18)O2—C20—H20B108.5
C10—C11—H11121.0C6—C20—H20B108.5
C12—C11—H11121.0H20A—C20—H20B107.5
C11—C12—C7121.10 (18)O4—C21—O3123.6 (2)
C11—C12—H12119.5O4—C21—C22123.2 (2)
C7—C12—H12119.5O3—C21—C22113.2 (2)
O1—C13—C7111.63 (15)C22i—C22—C21124.2 (3)
O1—C13—C14103.90 (15)C22i—C22—H22117.9
C7—C13—C14109.04 (15)C21—C22—H22117.9
C6—C1—C2—C31.1 (3)C6—C1—C13—O161.9 (2)
C13—C1—C2—C3177.22 (18)C2—C1—C13—C7120.45 (18)
C1—C2—C3—C40.8 (3)C6—C1—C13—C761.3 (2)
C2—C3—C4—C50.5 (3)C2—C1—C13—C141.7 (2)
C2—C3—C4—C19178.5 (2)C6—C1—C13—C14176.56 (17)
C3—C4—C5—C60.6 (3)O1—C13—C14—C1557.5 (2)
C19—C4—C5—C6178.4 (2)C7—C13—C14—C1561.7 (2)
C4—C5—C6—C10.9 (3)C1—C13—C14—C15175.25 (17)
C4—C5—C6—C20178.1 (2)C13—C14—C15—C16155.5 (5)
C2—C1—C6—C51.2 (3)C13—C14—C15—C16'174.2 (5)
C13—C1—C6—C5177.17 (17)C16'—C15—C16—N168.1 (7)
C2—C1—C6—C20177.78 (19)C14—C15—C16—N1166.0 (5)
C13—C1—C6—C203.9 (3)C17—N1—C16—C1586.9 (12)
C12—C7—C8—C90.3 (3)C18'—N1—C16—C15126.9 (9)
C13—C7—C8—C9176.38 (17)C16'—N1—C16—C1571.4 (7)
C7—C8—C9—C100.7 (3)C17'—N1—C16—C15114.3 (9)
C8—C9—C10—C111.2 (3)C18—N1—C16—C15147.1 (9)
C8—C9—C10—F1176.93 (17)C16—C15—C16'—N169.9 (7)
F1—C10—C11—C12177.34 (18)C14—C15—C16'—N1163.8 (5)
C9—C10—C11—C120.8 (3)C17—N1—C16'—C15127.4 (10)
C10—C11—C12—C70.2 (3)C18'—N1—C16'—C1586.9 (9)
C8—C7—C12—C110.7 (3)C16—N1—C16'—C1566.2 (7)
C13—C7—C12—C11175.92 (18)C17'—N1—C16'—C15147.9 (8)
C12—C7—C13—O113.5 (2)C18—N1—C16'—C15113.4 (9)
C8—C7—C13—O1169.91 (16)C3—C4—C19—N2164 (14)
C12—C7—C13—C14100.7 (2)C5—C4—C19—N215 (14)
C8—C7—C13—C1475.9 (2)C5—C6—C20—O2119.3 (2)
C12—C7—C13—C1135.18 (18)C1—C6—C20—O261.7 (3)
C8—C7—C13—C148.3 (2)O4—C21—C22—C22i14.6 (4)
C2—C1—C13—O1116.40 (18)O3—C21—C22—C22i164.3 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.852.655 (2)165
O2—H2···O30.821.852.642 (3)162
N1—H1A···O4ii0.912.303.152 (3)155
N1—H1A···O3ii0.912.042.834 (3)145
C2—H2A···F1iii0.932.483.392 (3)167
Symmetry codes: (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H24FN2O2+·0.5C4H2O42
Mr400.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3312 (9), 8.8372 (11), 15.0396 (13)
α, β, γ (°)92.236 (1), 102.681 (2), 107.508 (2)
V3)1023.64 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.48 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7766, 4381, 3071
Rint0.016
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 1.06
No. of reflections4381
No. of parameters297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.852.655 (2)165
O2—H2···O30.821.852.642 (3)162
N1—H1A···O4i0.912.303.152 (3)155
N1—H1A···O3i0.912.042.834 (3)145
C2—H2A···F1ii0.932.483.392 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Hainan Province, China (No. 808145)

References

First citationBoegeso, K. P. (1987). US Patent 4 650 884.
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationPollock, B. G. (2001). Expert Opin. Pharmacother. 2, 681–698.  CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds