organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5,7-Tetra­bromo­adamantane

aDepartment of Chemistry, Provincial Key Laboratory of Characteristic Resources Utilization of Gansu Corridor, Hexi University, Zhangye 734000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Gansu Key Laboratory of Polymer Materials, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: weitaibao@126.com

(Received 1 December 2010; accepted 28 December 2010; online 8 January 2011)

In the pyramidal-shaped mol­ecule of the title compound, C10H12Br4, the four terminal Br—C bond distances are nearly identical, ranging from 1.964 (4) to 1.974 (4) Å. The Br⋯Br distance of 3.6553 (7) Å indicates van der Waals contacts between mol­ecules in the crystal structure.

Related literature

For applications of adamantane compounds, see: Kim et al. (2001[Kim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239-8247.]); Kozhushkov et al. (2005[Kozhushkov, S. I., Yufit, D. S., Boese, R., Bläser, D., Schreiner, P. R. & de Meijere, A. (2005). Eur. J. Org. Chem. 1409-1415.]); Li et al. (2003[Li, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O., Jin, C. & Keana, J. F. W. (2003). J. Org. Chem. 68, 4862-4869.]). For related structures, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]); Reddy et al. (1995[Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1995). J. Chem. Soc. Chem. Commun. pp. 339-340.]). For the synthesis, see: Murray et al. (1989[Murray, R. W., Rajadhyaksha, S. N. & Mohan, L. (1989). J. Org. Chem. 54, 5783-5785.]); Migulin & Menger (2001[Migulin, V. A. & Menger, F. M. (2001). Langmuir, 17, 1324-1327.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12Br4

  • Mr = 451.84

  • Monoclinic, P 21 /n

  • a = 11.7669 (4) Å

  • b = 9.0612 (3) Å

  • c = 12.1493 (4) Å

  • β = 98.529 (2)°

  • V = 1281.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.53 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.097, Tmax = 0.153

  • 7087 measured reflections

  • 2511 independent reflections

  • 1892 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.077

  • S = 1.01

  • 2511 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of adamantane attract a broad interdisciplinary interest as rigid molecular scaffolds for sustaining the structures of polyfunctional species, which find various applications in the chemistry of supramolecular systems, macromolecules, dendrimers and polymers (Kim et al., 2001; Kozhushkov et al., 2005; Li et al., 2003). Thus, adamantanes substituted in the four available bridgehead positions represent a family of rigid tetrahedral building blocks for the synthesis of hydrogen and coordination-bonded framework polymers, and they are paradigmatic for the general principles of crystal design.

The asymmetric unit contain only a 1,3,5,7-Tetrabromoadamantane molecule. The molecular structure is shown in Fig. 1. The conformation of the 1,3,5,7-Tetrabromoadamantane unit is very similar to the conformation in the crystal structure of adamantane and 1,3,5,7–tetraiodoadamantane (Pedireddi et al., 1994; Reddy et al., 1995), with four nearly identical C–Br bons distance [1.967 (4), 1.969 (4), 1.974 (4), 1.964 (4) Å].

In the crystal structure, the intermolecular Br···Br distance is 3.655, 3.724, 3.884, 3.962 Å, respectively. Each molecule is joined to two or three others with Br···Br interactions leading to the crystal packing in a supramolecular 3-dimentional network as shown in Fig. 2.

Related literature top

For applications of adamantane compounds, see: Kim et al. (2001); Kozhushkov et al. (2005); Li et al. (2003). For related structures, see: Pedireddi et al. (1994); Reddy et al. (1995). For the synthesis, see: Murray et al. (1989); Migulin & Menger (2001).

Experimental top

The compound was prepared in the procudure reported by Murray et al. (1989) and by Migulin & Menger (2001). Adamantane (27.0 g, 0.2 mol) was added portionwise over 30 min to a stirred mixture of bromine (350 g, 2.2 mol) and anhydrous aluminium chloride (27.0 g, 0.2 mol) at 278 to 283 K. The mixture was heated to 363 K over a period of 1 h and held at that temperature for 24 h. Hydrogen bromide was evolved copiously during the addition and heating. Excess bromine (180 g) was distilled on the water bath. The residue was triturated with aqueous sodium sulfite (to remove excess bromine) with hydrochloric acid added (to dissolve aluminium salts). The solids were removed by filtration, washed, air-dried, and recrystallization from 1200 ml of glacial acetic acid.

Refinement top

The H atoms were placed at calculated positions with C—H = 0.97 Å and refined in riding model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional packing diagram of the compound by intermolecular Br···Br interactions.
1,3,5,7-Tetrabromoadamantane top
Crystal data top
C10H12Br4F(000) = 848
Mr = 451.84Dx = 2.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2005 reflections
a = 11.7669 (4) Åθ = 2.6–25.9°
b = 9.0612 (3) ŵ = 12.53 mm1
c = 12.1493 (4) ÅT = 296 K
β = 98.529 (2)°Block, colourless
V = 1281.06 (7) Å30.35 × 0.32 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2511 independent reflections
Radiation source: fine-focus sealed tube1892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1314
Tmin = 0.097, Tmax = 0.153k = 119
7087 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.419P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C10H12Br4V = 1281.06 (7) Å3
Mr = 451.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7669 (4) ŵ = 12.53 mm1
b = 9.0612 (3) ÅT = 296 K
c = 12.1493 (4) Å0.35 × 0.32 × 0.24 mm
β = 98.529 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1892 reflections with I > 2σ(I)
Tmin = 0.097, Tmax = 0.153Rint = 0.047
7087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 0.70 e Å3
2511 reflectionsΔρmin = 0.67 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.09687 (5)0.62981 (5)0.32537 (5)0.05014 (17)
Br21.16582 (4)0.01485 (5)0.39605 (5)0.05204 (18)
Br30.71851 (4)0.26097 (6)0.35978 (5)0.05166 (17)
Br40.94466 (5)0.22452 (6)0.02140 (4)0.04818 (16)
C11.0321 (4)0.4324 (5)0.2896 (4)0.0313 (10)
C21.1152 (4)0.3177 (5)0.3482 (4)0.0366 (11)
H2A1.18920.32510.32260.044*
H2B1.12620.33360.42800.044*
C31.0625 (3)0.1664 (4)0.3203 (4)0.0311 (10)
C40.9471 (4)0.1532 (5)0.3643 (4)0.0365 (11)
H4A0.91440.05580.34870.044*
H4B0.95760.16910.44410.044*
C50.8681 (4)0.2707 (5)0.3050 (4)0.0335 (10)
C60.9174 (4)0.4244 (5)0.3321 (4)0.0352 (11)
H6A0.86560.49910.29630.042*
H6B0.92790.44110.41180.042*
C70.8488 (3)0.2456 (5)0.1789 (4)0.0341 (11)
H7A0.81540.14900.16140.041*
H7B0.79710.31980.14220.041*
C80.9661 (4)0.2567 (4)0.1403 (4)0.0312 (10)
C91.0165 (4)0.4106 (5)0.1642 (4)0.0329 (10)
H9A1.08990.41880.13730.039*
H9B0.96500.48480.12740.039*
C101.0470 (4)0.1384 (4)0.1955 (4)0.0351 (11)
H10A1.12040.14380.16850.042*
H10B1.01450.04110.17870.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0643 (4)0.0367 (3)0.0492 (3)0.0179 (2)0.0078 (3)0.0076 (2)
Br20.0501 (3)0.0462 (3)0.0589 (4)0.0088 (2)0.0049 (3)0.0190 (3)
Br30.0371 (3)0.0639 (3)0.0582 (4)0.0055 (2)0.0214 (3)0.0025 (3)
Br40.0573 (3)0.0577 (3)0.0292 (3)0.0008 (2)0.0054 (2)0.0053 (2)
C10.033 (2)0.026 (2)0.035 (3)0.0085 (18)0.005 (2)0.004 (2)
C20.031 (2)0.046 (3)0.032 (3)0.006 (2)0.002 (2)0.001 (2)
C30.030 (2)0.028 (2)0.034 (3)0.0008 (18)0.002 (2)0.007 (2)
C40.043 (3)0.039 (3)0.029 (3)0.007 (2)0.009 (2)0.003 (2)
C50.030 (2)0.036 (2)0.036 (3)0.0030 (19)0.012 (2)0.002 (2)
C60.042 (3)0.032 (2)0.032 (3)0.000 (2)0.005 (2)0.007 (2)
C70.029 (2)0.037 (2)0.036 (3)0.0058 (19)0.006 (2)0.001 (2)
C80.038 (2)0.034 (2)0.020 (2)0.0029 (19)0.001 (2)0.0001 (19)
C90.036 (2)0.034 (2)0.028 (2)0.0040 (19)0.005 (2)0.003 (2)
C100.037 (2)0.031 (2)0.039 (3)0.0036 (19)0.010 (2)0.004 (2)
Geometric parameters (Å, º) top
Br1—C11.967 (4)C4—H4B0.9700
Br2—C31.969 (4)C5—C61.526 (6)
Br3—C51.974 (4)C5—C71.532 (6)
Br4—C81.964 (4)C6—H6A0.9700
C1—C61.517 (5)C6—H6B0.9700
C1—C91.520 (6)C7—C81.525 (6)
C1—C21.529 (6)C7—H7A0.9700
C2—C31.522 (6)C7—H7B0.9700
C2—H2A0.9700C8—C101.522 (6)
C2—H2B0.9700C8—C91.527 (6)
C3—C101.522 (6)C9—H9A0.9700
C3—C41.537 (6)C9—H9B0.9700
C4—C51.522 (6)C10—H10A0.9700
C4—H4A0.9700C10—H10B0.9700
C6—C1—C9110.7 (4)C1—C6—C5107.4 (3)
C6—C1—C2110.4 (4)C1—C6—H6A110.2
C9—C1—C2110.6 (3)C5—C6—H6A110.2
C6—C1—Br1107.6 (3)C1—C6—H6B110.2
C9—C1—Br1109.0 (3)C5—C6—H6B110.2
C2—C1—Br1108.4 (3)H6A—C6—H6B108.5
C3—C2—C1107.3 (3)C8—C7—C5107.0 (3)
C3—C2—H2A110.3C8—C7—H7A110.3
C1—C2—H2A110.3C5—C7—H7A110.3
C3—C2—H2B110.3C8—C7—H7B110.3
C1—C2—H2B110.3C5—C7—H7B110.3
H2A—C2—H2B108.5H7A—C7—H7B108.6
C2—C3—C10110.9 (4)C10—C8—C7110.7 (3)
C2—C3—C4110.1 (3)C10—C8—C9111.0 (3)
C10—C3—C4110.6 (4)C7—C8—C9110.2 (3)
C2—C3—Br2108.7 (3)C10—C8—Br4108.4 (3)
C10—C3—Br2108.9 (3)C7—C8—Br4108.1 (3)
C4—C3—Br2107.4 (3)C9—C8—Br4108.3 (3)
C5—C4—C3106.9 (3)C1—C9—C8107.2 (3)
C5—C4—H4A110.3C1—C9—H9A110.3
C3—C4—H4A110.3C8—C9—H9A110.3
C5—C4—H4B110.3C1—C9—H9B110.3
C3—C4—H4B110.3C8—C9—H9B110.3
H4A—C4—H4B108.6H9A—C9—H9B108.5
C4—C5—C6110.5 (4)C8—C10—C3107.3 (3)
C4—C5—C7111.1 (3)C8—C10—H10A110.3
C6—C5—C7110.3 (4)C3—C10—H10A110.3
C4—C5—Br3108.8 (3)C8—C10—H10B110.3
C6—C5—Br3107.3 (3)C3—C10—H10B110.3
C7—C5—Br3108.9 (3)H10A—C10—H10B108.5
C6—C1—C2—C361.7 (5)C4—C5—C7—C861.2 (4)
C9—C1—C2—C361.2 (4)C6—C5—C7—C861.6 (4)
Br1—C1—C2—C3179.3 (3)Br3—C5—C7—C8179.0 (3)
C1—C2—C3—C1061.1 (4)C5—C7—C8—C1061.3 (4)
C1—C2—C3—C461.7 (5)C5—C7—C8—C961.9 (4)
C1—C2—C3—Br2179.2 (3)C5—C7—C8—Br4179.8 (3)
C2—C3—C4—C561.8 (5)C6—C1—C9—C861.7 (4)
C10—C3—C4—C561.2 (4)C2—C1—C9—C861.1 (4)
Br2—C3—C4—C5179.9 (3)Br1—C1—C9—C8179.9 (3)
C3—C4—C5—C661.7 (4)C10—C8—C9—C161.1 (4)
C3—C4—C5—C761.0 (4)C7—C8—C9—C161.9 (4)
C3—C4—C5—Br3179.2 (3)Br4—C8—C9—C1180.0 (3)
C9—C1—C6—C561.4 (5)C7—C8—C10—C362.0 (4)
C2—C1—C6—C561.4 (5)C9—C8—C10—C360.8 (4)
Br1—C1—C6—C5179.6 (3)Br4—C8—C10—C3179.7 (3)
C4—C5—C6—C161.8 (5)C2—C3—C10—C860.8 (4)
C7—C5—C6—C161.3 (4)C4—C3—C10—C861.7 (4)
Br3—C5—C6—C1179.7 (3)Br2—C3—C10—C8179.5 (3)

Experimental details

Crystal data
Chemical formulaC10H12Br4
Mr451.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7669 (4), 9.0612 (3), 12.1493 (4)
β (°) 98.529 (2)
V3)1281.06 (7)
Z4
Radiation typeMo Kα
µ (mm1)12.53
Crystal size (mm)0.35 × 0.32 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.097, 0.153
No. of measured, independent and
observed [I > 2σ(I)] reflections
7087, 2511, 1892
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.01
No. of reflections2511
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20671077) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, J., Chen, B., Reineke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239–8247.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKozhushkov, S. I., Yufit, D. S., Boese, R., Bläser, D., Schreiner, P. R. & de Meijere, A. (2005). Eur. J. Org. Chem. 1409–1415.  Google Scholar
First citationLi, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O., Jin, C. & Keana, J. F. W. (2003). J. Org. Chem. 68, 4862–4869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMigulin, V. A. & Menger, F. M. (2001). Langmuir, 17, 1324–1327.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurray, R. W., Rajadhyaksha, S. N. & Mohan, L. (1989). J. Org. Chem. 54, 5783–5785.  CrossRef CAS Web of Science Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationReddy, D. S., Craig, D. C. & Desiraju, G. R. (1995). J. Chem. Soc. Chem. Commun. pp. 339–340.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds