metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m163-m164

Poly[(μ4-pyridine-2,3-di­carboxyl­ato)lead(II)]

aDepartment of General Education Center, Yuanpei University, HsinChu 30015, Taiwan, and bDepartment of Biotechnology, Yuanpei University, HsinChu 30015, Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 16 December 2010; accepted 5 January 2011; online 15 January 2011)

In the title coordination polymer, [Pb(C7H3NO4)]n, the PbII ion is eight-coordinated in a distorted square-anti­prismatic geometry formed by one pyridine N atom and seven carboxyl­ate O atoms from four pyridine-2,3-dicarboxyl­ate (pda) anions. In the pda anion, the dihedral angles between the pyridine ring and carboxyl­ate groups are 19.5 (6) and 73.3 (6)°. The carboxyl­ate groups of the pda anions bridge the Pb ions, forming a two-dimensional coordination polymer parallel to (100). Weak inter­molecular C—H⋯O hydrogen boning is present in the crystal structure.

Related literature

For the coordination modes of the pyridine-2,3-dicarboxyl­ate anion, see: Aghabozorg et al. (2007[Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.]); Baruah et al. (2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518-4524.]); Li et al. (2006[Li, M., Xiang, J.-F., Yuan, L.-J., Wu, S.-M., Chen, S.-P. & Sun, J.-T. (2006). Cryst. Growth Des. 6, 2036-2040.]). For the biological activity of pyridine-2,3-dicarb­oxy­lic acid, see: Xiang et al. (2006[Xiang, J.-F., Li, M., Wu, S.-M., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, m1122-m1123.]); Yang et al. (2006[Yang, H., Zhang, Z.-H., Guo, J.-H. & Lu, Y.-C. (2006). Chin. J. Struct. Chem. 25, 689-693.]); Zhang et al. (2008[Zhang, C.-X., Ma, C.-B., Wang, M. & Chen, C.-N. (2008). Chin. J. Struct. Chem. 27, 1370-1374.]). For the inert lone-pair effect, see: Liat et al. (1998[Liat, S. L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]). For longer Pb—O bonds, see: Mao et al. (2006[Mao, J.-G., Wang, Z. & Gearfield, A. (2006). Inorg. Chem. 41, 6106-6111.]); Yang et al. (2010[Yang, J., Dai, J. & Wang, X. (2010). Acta Cryst. E66, m1686.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C7H3NO4)]

  • Mr = 372.30

  • Monoclinic, P 21 /c

  • a = 11.6943 (9) Å

  • b = 4.5392 (4) Å

  • c = 14.1636 (12) Å

  • β = 90.046 (2)°

  • V = 751.84 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 22.42 mm−1

  • T = 297 K

  • 0.54 × 0.23 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 1.000

  • 4013 measured reflections

  • 1484 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.204

  • S = 1.13

  • 1484 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 4.56 e Å−3

  • Δρmin = −5.06 e Å−3

Table 1
Selected bond lengths (Å)

Pb—N 2.651 (7)
Pb—O1i 2.816 (7)
Pb—O1ii 2.911 (6)
Pb—O2 2.592 (7)
Pb—O2i 2.566 (9)
Pb—O3iii 2.397 (9)
Pb—O3ii 2.754 (9)
Pb—O4ii 2.845 (7)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3iii 0.93 2.57 3.164 (13) 122
Symmetry code: (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The pyridine-2,3-dicarboxylic acid (pdaH2) is a typical chealated-form ligand. Its biological importance has been described in several literatures (Xiang et al., 2006; Yang et al., 2006; Zhang et al., 2008). Pda shows diverse coordination modes, such as monodentate (Baruah et al., 2007), µ2-bridging (Aghabozorg et al., 2007), µ3-bridging (Li et al., 2006). Here we describe the title compound in which the pda is a µ4-bridging ligand (Fig. 1).

The structure of a coordination polymer [Pb(C7H3NO4)]n, the lead ion is eight-coordinated with a distorted square-antiprismatic geometry formed by one O-monodentate pda-2 ligand, one N,O-bidentate pda-2 ligand, one O,O'-bidentate pda-2 ligand and one O,O',O''-tridentate pda-2 ligand (Table 1). According to "inert-pair effect", the coordination number of PbII is variable, and the lengths of bonds to PbII vary in a wide range (Liat et al., 1998). Longer distance is observed between Pb and O1 (2.911 (6) Å); some long Pb—O weak bonds have also been reported in reported lead complexes (Mao et al., 2006; Yang et al., 2010). The carboxylate group of pda-2ligand bridges four PbII ion forming a 2-D framework is constructed.

There are no classic intermolecular hydrogen-bonding in the title compound, but intermolecular C—H···O weak interaction (Table 2) and ring···metal interaction help to stabilize the crystal structure, the Cg3 (Pb/O1—O2—C6)···Pb interaction is 3.877 Å (symmetry code: 1 - x,-1/2 + y,3/2 - z).

Related literature top

For the coordination modes of the pyridine-2,3-dicarboxylate anion, see: Aghabozorg et al. (2007); Baruah et al. (2007); Li et al. (2006). For the biological activity of pyridine-2,3-dicarboxylic acid, see: Xiang et al. (2006); Yang et al. (2006); Zhang et al. (2008). For the inert-pair effect, see: Liat et al. (1998). For longer Pb—O bonds, see: Mao et al. (2006); Yang et al. (2010).

Experimental top

An aqueous solution (5 ml) containing Pb(NO3)2 (0.164 g, 0.50 mmol) and 1,2-bis(4-pyridyl)ethane (0.0934 g, 0.50 mmol) was added to an aqueous solution (5 ml) of pyridine-2,3-dicarboxylic acid (0.0838 g, 0.50 mmol), and the mixture was stirred for 30 minutes and then filtered. The solution was placed in a 23 ml Teflon-lined reactor, heated at 423 K for 3 days, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 45.67% yield (based on Pb).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 (aromatic), and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, -y - 1/2, z + 1/2; (iii) x, -y + 1/2].
Poly[(µ4-pyridine-2,3-dicarboxylato)lead(II)] top
Crystal data top
[Pb(C7H3NO4)]F(000) = 664
Mr = 372.30Dx = 3.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2856 reflections
a = 11.6943 (9) Åθ = 2.3–26.0°
b = 4.5392 (4) ŵ = 22.42 mm1
c = 14.1636 (12) ÅT = 297 K
β = 90.046 (2)°Parallelepiped, colorless
V = 751.84 (11) Å30.54 × 0.23 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1484 independent reflections
Radiation source: fine-focus sealed tube1336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scanh = 1410
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 55
Tmin = 0.659, Tmax = 1.000l = 1717
4013 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1477P)2]
where P = (Fo2 + 2Fc2)/3
1484 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 4.56 e Å3
0 restraintsΔρmin = 5.06 e Å3
Crystal data top
[Pb(C7H3NO4)]V = 751.84 (11) Å3
Mr = 372.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6943 (9) ŵ = 22.42 mm1
b = 4.5392 (4) ÅT = 297 K
c = 14.1636 (12) Å0.54 × 0.23 × 0.04 mm
β = 90.046 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1336 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 1.000Rint = 0.125
4013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.13Δρmax = 4.56 e Å3
1484 reflectionsΔρmin = 5.06 e Å3
118 parameters
Special details top

Experimental. Elemental analysis: calculated for C7H3NO4Pb: (Mr=372.29) C, 22.56; H, 0.81; N, 3.76%. Found:C,22.47; H, 0.89; N, 3.85%. IR data (cm-1): 3429(s), 1602(s), 1579(s), 1551(s), 1459(w), 1385(s), 1276(w), 1236(w), 1105(m), 871(m), 825(m), 779(m), 711(s), 700(m), 660(m), 603(w), 534(w), 443(w).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.60762 (4)0.01636 (10)0.85892 (3)0.0213 (3)
O10.6007 (6)0.3400 (19)0.5591 (4)0.035 (2)
O20.5381 (7)0.120 (2)0.6883 (5)0.037 (3)
O30.6905 (9)0.061 (2)0.4106 (6)0.032 (3)
O40.8222 (6)0.2863 (17)0.4294 (4)0.038 (2)
N0.7437 (6)0.1315 (19)0.7170 (5)0.024 (2)
C10.7208 (12)0.0178 (18)0.6321 (9)0.021 (4)
C20.7951 (11)0.058 (3)0.5526 (9)0.021 (3)
C30.8932 (8)0.216 (2)0.5715 (6)0.027 (3)
C40.9192 (9)0.325 (3)0.6603 (7)0.038 (4)
C50.8383 (9)0.288 (3)0.7300 (6)0.036 (3)
C60.6141 (8)0.163 (3)0.6231 (6)0.023 (3)
C70.7687 (9)0.068 (2)0.4580 (7)0.019 (3)
H3A0.944100.251800.522400.0320*
H4A0.988200.419800.672300.0450*
H5A0.850600.374900.788500.0430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.0207 (5)0.0242 (5)0.0189 (5)0.0031 (1)0.0051 (3)0.0016 (1)
O10.035 (4)0.045 (5)0.026 (3)0.015 (4)0.007 (3)0.012 (3)
O20.027 (4)0.061 (6)0.024 (3)0.017 (5)0.001 (3)0.013 (4)
O30.039 (5)0.031 (4)0.027 (4)0.006 (4)0.022 (4)0.013 (4)
O40.044 (4)0.041 (5)0.030 (3)0.007 (4)0.010 (3)0.009 (3)
N0.018 (4)0.032 (5)0.021 (3)0.004 (3)0.003 (3)0.004 (3)
C10.018 (7)0.028 (6)0.017 (6)0.002 (3)0.000 (5)0.001 (3)
C20.006 (5)0.037 (5)0.021 (5)0.002 (4)0.004 (4)0.010 (5)
C30.023 (5)0.032 (6)0.026 (4)0.006 (4)0.003 (4)0.003 (4)
C40.029 (6)0.054 (8)0.031 (5)0.018 (6)0.013 (4)0.010 (5)
C50.041 (6)0.046 (7)0.021 (4)0.009 (5)0.009 (4)0.011 (4)
C60.018 (5)0.031 (5)0.021 (4)0.006 (4)0.005 (3)0.002 (4)
C70.008 (5)0.030 (5)0.019 (4)0.006 (4)0.007 (4)0.004 (4)
Geometric parameters (Å, º) top
Pb—N2.651 (7)N—C11.336 (14)
Pb—O1i2.816 (7)N—C51.327 (14)
Pb—O1ii2.911 (6)C1—C21.435 (18)
Pb—O22.592 (7)C1—C61.499 (17)
Pb—O2i2.566 (9)C2—C31.379 (16)
Pb—O3iii2.397 (9)C2—C71.489 (16)
Pb—O3ii2.754 (9)C3—C41.385 (14)
Pb—O4ii2.845 (7)C4—C51.378 (14)
O1—C61.221 (13)C3—H3A0.9300
O2—C61.297 (12)C4—H4A0.9300
O3—C71.276 (14)C5—H5A0.9300
O4—C71.240 (12)
O2—Pb—N61.8 (2)Pbv—O1—C6150.1 (7)
O1i—Pb—O299.5 (2)Pbiv—O1—Pbv111.3 (2)
O2—Pb—O2i71.1 (3)Pb—O2—C6118.5 (6)
O2—Pb—O3iii124.6 (3)Pb—O2—Pbiv125.3 (3)
O1ii—Pb—O2149.2 (2)Pbiv—O2—C699.5 (7)
O2—Pb—O3ii101.2 (3)Pbvi—O3—C7147.7 (8)
O2—Pb—O4ii123.1 (2)Pbv—O3—C788.8 (6)
O2—Pb—C7ii121.1 (3)Pbvi—O3—Pbv123.4 (4)
O1i—Pb—N139.5 (2)Pbv—O4—C785.5 (6)
O2i—Pb—N91.4 (2)Pb—N—C1117.7 (7)
O3iii—Pb—N76.7 (3)Pb—N—C5122.1 (6)
O1ii—Pb—N144.3 (2)C1—N—C5119.9 (9)
O3ii—Pb—N102.6 (3)N—C1—C2122.4 (11)
O4ii—Pb—N79.4 (2)N—C1—C6117.0 (10)
N—Pb—C7ii97.8 (3)C2—C1—C6120.5 (10)
O1i—Pb—O2i48.2 (2)C1—C2—C3114.7 (11)
O1i—Pb—O3iii88.8 (3)C1—C2—C7122.2 (11)
O1i—Pb—O1ii68.73 (19)C3—C2—C7123.1 (10)
O1i—Pb—O3ii116.7 (3)C2—C3—C4123.0 (10)
O1i—Pb—O4ii135.08 (17)C3—C4—C5117.2 (10)
O1i—Pb—C7ii121.8 (2)N—C5—C4122.6 (9)
O2i—Pb—O3iii75.1 (3)O1—C6—O2122.7 (10)
O1ii—Pb—O2i113.1 (2)O1—C6—C1122.0 (9)
O2i—Pb—O3ii158.7 (3)O2—C6—C1115.3 (10)
O2i—Pb—O4ii153.8 (2)O3—C7—O4123.8 (9)
O2i—Pb—C7ii167.3 (2)O3—C7—C2116.4 (9)
O1ii—Pb—O3iii84.7 (3)Pbv—C7—O366.1 (6)
O3iii—Pb—O3ii123.4 (3)O4—C7—C2119.8 (9)
O3iii—Pb—O4ii78.9 (3)Pbv—C7—O470.3 (5)
O3iii—Pb—C7ii98.4 (3)Pbv—C7—C2142.1 (7)
O1ii—Pb—O3ii63.3 (2)C2—C3—H3A119.00
O1ii—Pb—O4ii67.22 (18)C4—C3—H3A118.00
O1ii—Pb—C7ii54.8 (2)C3—C4—H4A121.00
O3ii—Pb—O4ii46.7 (3)C5—C4—H4A121.00
O3ii—Pb—C7ii25.1 (3)N—C5—H5A119.00
O4ii—Pb—C7ii24.2 (2)C4—C5—H5A119.00
Pbiv—O1—C689.5 (6)
N—Pb—O2—C627.3 (8)O2—Pb—O4ii—C7ii93.1 (6)
N—Pb—O2—Pbiv155.1 (5)N—Pb—O4ii—C7ii138.9 (6)
O1i—Pb—O2—C6169.0 (9)O2—Pb—C7ii—O3ii41.3 (7)
O1i—Pb—O2—Pbiv63.2 (4)O2—Pb—C7ii—O4ii102.4 (5)
O2i—Pb—O2—C6129.5 (9)O2—Pb—C7ii—C2ii144.2 (11)
O2i—Pb—O2—Pbiv102.7 (4)N—Pb—C7ii—O3ii102.9 (6)
O3iii—Pb—O2—C673.9 (10)N—Pb—C7ii—O4ii40.7 (6)
O3iii—Pb—O2—Pbiv158.3 (4)N—Pb—C7ii—C2ii154.2 (12)
O1ii—Pb—O2—C6126.9 (9)Pbv—O1—C6—O2131.7 (11)
O1ii—Pb—O2—Pbiv0.9 (7)Pbiv—O1—C6—C1175.5 (10)
O3ii—Pb—O2—C671.1 (9)Pbiv—O1—C6—O23.8 (11)
O3ii—Pb—O2—Pbiv56.7 (4)Pbv—O1—C6—C149.0 (19)
O4ii—Pb—O2—C625.9 (10)Pbiv—O2—C6—C1175.1 (8)
O4ii—Pb—O2—Pbiv101.9 (4)Pb—O2—C6—C136.0 (13)
C7ii—Pb—O2—C654.5 (10)Pb—O2—C6—O1143.4 (9)
C7ii—Pb—O2—Pbiv73.3 (5)Pbiv—O2—C6—O14.2 (12)
O2—Pb—N—C115.4 (7)Pbvi—O3—C7—O4136.7 (11)
O2—Pb—N—C5171.4 (9)Pbv—O3—C7—O442.2 (10)
O1i—Pb—N—C185.5 (8)Pbvi—O3—C7—C243.1 (19)
O1i—Pb—N—C5101.3 (8)Pbv—O3—C7—C2138.0 (9)
O2i—Pb—N—C183.0 (7)Pbvi—O3—C7—Pbv178.9 (15)
O2i—Pb—N—C5103.8 (9)Pbv—O4—C7—O340.7 (10)
O3iii—Pb—N—C1157.4 (8)Pbv—O4—C7—C2139.5 (9)
O3iii—Pb—N—C529.4 (9)C5—N—C1—C20.1 (16)
O1ii—Pb—N—C1142.1 (7)Pb—N—C1—C2173.5 (8)
O1ii—Pb—N—C531.1 (10)Pb—N—C1—C65.1 (12)
O3ii—Pb—N—C180.8 (7)C1—N—C5—C44.1 (17)
O3ii—Pb—N—C592.4 (9)C5—N—C1—C6178.5 (10)
O4ii—Pb—N—C1121.6 (7)Pb—N—C5—C4169.0 (9)
O4ii—Pb—N—C551.6 (8)C6—C1—C2—C3176.8 (10)
C7ii—Pb—N—C1105.8 (7)N—C1—C2—C31.7 (16)
C7ii—Pb—N—C567.4 (9)N—C1—C2—C7179.7 (10)
O2—Pb—O1i—C6i51.7 (7)C6—C1—C2—C71.9 (17)
O2—Pb—O1i—Pbvii150.3 (3)N—C1—C6—O1159.4 (10)
N—Pb—O1i—C6i5.4 (8)N—C1—C6—O220.0 (15)
N—Pb—O1i—Pbvii152.5 (3)C2—C1—C6—O119.2 (17)
O2—Pb—O2i—Pbi14.6 (4)C2—C1—C6—O2161.5 (10)
O2—Pb—O2i—C6i120.6 (7)C1—C2—C3—C40.7 (17)
N—Pb—O2i—Pbi44.8 (4)C7—C2—C3—C4177.9 (11)
N—Pb—O2i—C6i179.9 (7)C1—C2—C7—O374.7 (15)
O2—Pb—O3iii—C7iii136.3 (13)C1—C2—C7—O4105.5 (13)
N—Pb—O3iii—C7iii95.1 (14)C1—C2—C7—Pbv10 (2)
O2—Pb—O1ii—Pbvii72.2 (6)C3—C2—C7—O3106.7 (13)
O2—Pb—O1ii—C6ii59.0 (14)C3—C2—C7—O473.0 (15)
N—Pb—O1ii—Pbvii149.1 (3)C3—C2—C7—Pbv168.9 (8)
N—Pb—O1ii—C6ii79.8 (14)C2—C3—C4—C54.5 (18)
O2—Pb—O3ii—C7ii144.8 (6)C3—C4—C5—N6.3 (18)
N—Pb—O3ii—C7ii81.6 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+1/2, z1/2; (vi) x, y1/2, z1/2; (vii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3iii0.932.573.164 (13)122
Symmetry code: (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(C7H3NO4)]
Mr372.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)11.6943 (9), 4.5392 (4), 14.1636 (12)
β (°) 90.046 (2)
V3)751.84 (11)
Z4
Radiation typeMo Kα
µ (mm1)22.42
Crystal size (mm)0.54 × 0.23 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.659, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4013, 1484, 1336
Rint0.125
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.204, 1.13
No. of reflections1484
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)4.56, 5.06

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pb—N2.651 (7)Pb—O2i2.566 (9)
Pb—O1i2.816 (7)Pb—O3iii2.397 (9)
Pb—O1ii2.911 (6)Pb—O3ii2.754 (9)
Pb—O22.592 (7)Pb—O4ii2.845 (7)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3iii0.932.573.164 (13)122
Symmetry code: (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationAghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518–4524.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, M., Xiang, J.-F., Yuan, L.-J., Wu, S.-M., Chen, S.-P. & Sun, J.-T. (2006). Cryst. Growth Des. 6, 2036–2040.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiat, S. L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Google Scholar
First citationMao, J.-G., Wang, Z. & Gearfield, A. (2006). Inorg. Chem. 41, 6106–6111.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, J.-F., Li, M., Wu, S.-M., Yuan, L.-J. & Sun, J.-T. (2006). Acta Cryst. E62, m1122–m1123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J., Dai, J. & Wang, X. (2010). Acta Cryst. E66, m1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H., Zhang, Z.-H., Guo, J.-H. & Lu, Y.-C. (2006). Chin. J. Struct. Chem. 25, 689–693.  CAS Google Scholar
First citationZhang, C.-X., Ma, C.-B., Wang, M. & Chen, C.-N. (2008). Chin. J. Struct. Chem. 27, 1370–1374.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m163-m164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds