

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-{5-[(2-carboxyphenyl)sulfanylmethyl]-2,4-dimethylbenzylsulfanyl}benzoato- $\kappa^2 O, O'$)bis(pyridine- κN)iron(II)

Yu-Min Xu* and Tuo-Ping Hu

Department of Chemistry, North University of China, Taiyuan 030051, People's Republic of China

Correspondence e-mail: yuminzaizher@126.com

Received 20 December 2010; accepted 29 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.114; data-to-parameter ratio = 17.7.

The title compound, $[Fe(C_{24}H_{21}O_4S_2)_2(C_5H_5N)_2]$, has 2 symmetry. The Fe^{II} cation is located on a twofold rotation axis and is *O*,*O'*-chelated by two 2-{5-[(2-carboxyphenyl)-sulfanylmethyl]-2,4-dimethylbenzylsulfanyl}benzoate anions and further coordinated by two pyridine ligands in a distorted octahedral geometry. In the anion, the terminal benzene rings are oriented at dihedral angles of 63.81 (14) and 84.50 (14)° with respect to the central benzene ring. Intermolecular O– $H \cdots O$ and C– $H \cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For applications of multithioether ligands in inorganic chemistry, see: Li *et al.* (2002). For structures of related complexes with multithioether ligands, see: Bu *et al.* (2002); Alcock *et al.* (1978) and with carboxylate ligands, see: Dai *et al.* (2008).

Experimental

Crystal data [Fe(C₂₄H₂₁O₄S₂)₂(C₅H₅N)₂]

 $M_r = 1089.10$

metal-organic compounds

Mo $K\alpha$ radiation

 $0.15 \times 0.10 \times 0.10 \ \text{mm}$

29090 measured reflections 5950 independent reflections

3431 reflections with $I > 2\sigma(I)$

 $\mu = 0.51 \text{ mm}^-$

T = 293 K

 $R_{\rm int}=0.073$

Z = 4

Orthorhombic, *Pbcn* a = 16.987 (5) Å b = 9.635 (3) Å c = 31.982 (10) Å V = 5234 (3) Å³

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.928, T_{\max} = 0.951$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.114 & \text{independent and constrained} \\ S &= 1.00 & \text{refinement} \\ 5950 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.29 \text{ e} \text{ Å}^{-3} \\ 336 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.24 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

Fe1-O1	2.412 (2)	Fe1-N1	2.100 (2)
Fe1-O2	2.0400 (18)		. ,

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4-H4\cdots O1^{i}$ $C16-H16A\cdots O3^{ii}$	0.96 (4) 0.93	1.77 (4) 2.54	2.702 (3) 3.421 (3)	162 (4) 158
Summatry and as (i) y	1 1	· (ii) × 1 ···	11 -	

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x - \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The author is grateful for funding support from the Natural Science foundation of Shanxi province, China (2007011033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5127).

References

- Alcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 394–399.
- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, X.-H., Chen, W., Du, M., Kumar, B., Wang, W.-Z. & Zhang, R.-H. (2002). *Inorg. Chem.* 41, 437–439.
- Dai, F., He, H., Gao, D., Ye, F., Qiu, X. & Sun, D. (2008). CrystEngComm, 11, 2516–2522
- Li, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2002). Acta Cryst. E58, 0243–0244.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m159 [doi:10.1107/S1600536810054619]

Bis(2-{5-[(2-carboxyphenyl)sulfanylmethyl]-2,4-dimethylbenzyl-sulfanyl}benzoato- $\kappa^2 O, O'$)bis(pyridine- κN)iron(II)

Yu-Min Xu and Tuo-Ping Hu

S1. Comment

Multithioether ligands possess unusual potential for structure control in inorganic chemistry (Li et al., 2002). Some crystal structures of complexes with multithioether ligands have been reported previously (Bu et al., 2002; Alcock et al., 1978). The title compound with the flexible multithioether ligand was obtained in preparing of metal-organic framework (MOF) compounds.

In (I), the central Fe^{2+} ion is coordinated by four oxygen atoms from the carboxylate group of the ligand and two nitrogen atoms from the pyridine molecule in a distorted octahedron (Fig. 1).

The asymmetry unit contains one ligand, one pyridine molecule, and half Fe^{2+} ion sitting on the twofold axis, with the other part being generated by the symmetry operation of C < l > 2.

Strong H-bondings are observed between the O-H group of the carboxylate group and O2 in the crystal structure (Table 2).

S2. Experimental

2,4-Bis(2-(benzylacid)thiophenylmethyl)-1,5-dimethylbenze (2 mg, 4.6 mmol) and $FeSO_4$ (4 mg, 26.3 mmol) were dissolved in 1 ml mixed solution of H2O, DMF and MeOH (5:3:2), then 1 drop pyridine was added. The mixed solution was sealed into a Pyrex glass tube. The mixed solution was heated at 363 K for 60 h, and then cooled down to room temperature over 17 h. Orange crystals were obtained from the reaction mixture.

S3. Refinement

The carboxyl H atom was located in a difference Fourier map and refined freely. Other H atoms were placed in calculated positions with C—H = 0.93-0.97 Å and refined in riding mode, $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular structure showing 35% probability displacement ellipsoids. The atoms marked with A are derived from the reference atoms by the symmetry transformation of (-x, y, z).

Bis(2-{5-[(2-carboxyphenyl)sulfanylmethyl]-2,4-dimethylbenzylsulfanyl}benzoato- $\kappa^2 O, O'$)bis(pyridine- κN)iron(II)

Crystal data

$[Fe(C_{24}H_{21}O_4S_2)_2(C_5H_5N)_2]$	F(000) = 2272
$M_r = 1089.10$	$D_{\rm x} = 1.382 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 3184 reflections
a = 16.987 (5) Å	$\theta = 2.4 - 20.3^{\circ}$
b = 9.635 (3) Å	$\mu=0.51~\mathrm{mm^{-1}}$
c = 31.982 (10) Å	<i>T</i> = 293 K
$V = 5234 (3) Å^3$	Prism, orange
Z = 4	$0.15 \times 0.10 \times 0.10$ mm

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.928, T_{\max} = 0.951$ 29090 measured reflections 5950 independent reflections 3431 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 27.4^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -22 \rightarrow 18$ $k = -11 \rightarrow 12$ $l = -40 \rightarrow 41$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
5950 reflections	and constrained refinement
336 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 0.3652P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

				TT 4/TT	
	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
Fe1	0.0000	0.74627 (6)	0.2500	0.04331 (16)	
S2	-0.30599 (4)	0.78127 (7)	0.40440 (2)	0.04618 (19)	
S3	0.04300 (4)	0.89147 (7)	0.38414 (2)	0.0475 (2)	
N1	0.08272 (13)	0.6062 (2)	0.22545 (7)	0.0479 (6)	
01	0.09558 (11)	0.9313 (2)	0.25198 (6)	0.0540 (5)	
O2	0.05286 (11)	0.8060 (2)	0.30437 (5)	0.0499 (5)	
03	-0.35938 (12)	0.5896 (2)	0.34618 (6)	0.0610 (6)	
O4	-0.45225 (12)	0.6383 (2)	0.29905 (6)	0.0617 (6)	
C1	0.09241 (15)	0.9076 (3)	0.29042 (8)	0.0417 (6)	
C2	0.13707 (15)	0.9951 (3)	0.32090 (8)	0.0396 (6)	
C3	0.19723 (17)	1.0779 (3)	0.30537 (10)	0.0575 (8)	
H3A	0.2079	1.0777	0.2768	0.069*	
C4	0.2413 (2)	1.1602 (4)	0.33156 (11)	0.0749 (10)	
H4A	0.2820	1.2143	0.3209	0.090*	
C5	0.22487 (19)	1.1615 (4)	0.37331 (11)	0.0755 (10)	
H5A	0.2546	1.2171	0.3911	0.091*	
C6	0.16505 (17)	1.0818 (3)	0.38954 (10)	0.0582 (8)	
H6A	0.1545	1.0856	0.4180	0.070*	
C7	0.12002 (14)	0.9957 (3)	0.36411 (8)	0.0401 (6)	
C8	0.02048 (16)	0.9718 (3)	0.43415 (8)	0.0519 (8)	
H8A	0.0658	0.9674	0.4525	0.062*	
H8B	0.0062	1.0684	0.4302	0.062*	
C9	-0.04780 (15)	0.8916 (3)	0.45280 (8)	0.0409 (6)	
C10	-0.03712 (15)	0.7868 (3)	0.48216 (8)	0.0426 (6)	

C11	0.04427 (16)	0.7410 (3)	0.49569 (10)	0.0642 (9)
H11A	0.0403	0.6564	0.5114	0.096*
H11B	0.0676	0.8118	0.5128	0.096*
H11C	0.0764	0.7259	0.4714	0.096*
C12	-0.10259 (15)	0.7253 (3)	0.49995 (8)	0.0437 (7)
H12A	-0.0950	0.6574	0.5202	0.052*
C13	-0.17944 (14)	0.7601 (3)	0.48894 (8)	0.0400 (6)
C14	-0.24754 (16)	0.6930 (3)	0.51124 (9)	0.0556 (8)
H14A	-0.2286	0.6178	0.5282	0.083*
H14B	-0.2844	0.6580	0.4911	0.083*
H14C	-0.2731	0.7603	0.5287	0.083*
C15	-0.19034 (15)	0.8607 (3)	0.45766 (8)	0.0394 (6)
C16	-0.12421 (15)	0.9235 (3)	0.44033 (8)	0.0436 (7)
H16A	-0.1314	0.9896	0.4195	0.052*
C17	-0.27102 (14)	0.9053 (3)	0.44325 (8)	0.0452 (7)
H17A	-0.2684	0.9975	0.4311	0.054*
H17B	-0.3069	0.9080	0.4668	0.054*
C18	-0.40055 (15)	0.8453 (3)	0.39068 (8)	0.0393 (6)
C19	-0.43241 (17)	0.9630 (3)	0.40961 (9)	0.0493 (7)
H19A	-0.4036	1.0091	0.4301	0.059*
C20	-0.50547(18)	1.0123 (3)	0.39868 (9)	0.0584 (8)
H20A	-0.5250	1.0916	0.4116	0.070*
C21	-0.55010(18)	0.9458 (4)	0.36882 (10)	0.0642 (9)
H21A	-0.6002	0.9779	0.3622	0.077*
C22	-0.51971 (17)	0.8319 (3)	0.34908 (9)	0.0535 (8)
H22A	-0.5494	0.7876	0.3286	0.064*
C23	-0.44520(15)	0.7808 (3)	0.35894 (8)	0.0400 (6)
C24	-0.41396 (17)	0.6604 (3)	0.33493 (9)	0.0453 (7)
C25	0.12280 (17)	0.6396 (3)	0.19087 (9)	0.0557 (8)
H25A	0.1064	0.7160	0.1754	0.067*
C26	0.18633 (19)	0.5669 (4)	0.17738 (11)	0.0692 (9)
H26A	0.2131	0.5947	0.1534	0.083*
C27	0.2106 (2)	0.4539 (4)	0.19880 (13)	0.0750 (10)
H27A	0.2545	0.4041	0.1901	0.090*
C28	0.1694 (2)	0.4137 (4)	0.23362 (13)	0.0778 (11)
H28A	0.1840	0.3350	0.2486	0.093*
C29	0.1056 (2)	0.4935 (4)	0.24592 (10)	0.0650 (9)
H29A	0.0776	0.4668	0.2696	0.078*
H4	-0.428(2)	0.561 (4)	0.2852 (12)	0.124 (16)*
		0.001 (1)		

Atomic	displa	acement	parameters	$(Å^2)$
--------	--------	---------	------------	---------

U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
0.0466 (3)	0.0494 (3)	0.0340 (3)	0.000	0.0038 (3)	0.000
0.0433 (4)	0.0469 (4)	0.0484 (4)	0.0056 (3)	-0.0105 (3)	-0.0091 (3)
0.0501 (4)	0.0531 (4)	0.0393 (4)	-0.0149 (4)	0.0100 (3)	-0.0041 (3)
0.0503 (14)	0.0503 (14)	0.0429 (14)	0.0007 (12)	0.0031 (11)	0.0009 (12)
0.0674 (13)	0.0589 (13)	0.0357 (11)	0.0015 (10)	0.0065 (10)	0.0067 (10)
	U ¹¹ 0.0466 (3) 0.0433 (4) 0.0501 (4) 0.0503 (14) 0.0674 (13)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0466 \ (3) & 0.0494 \ (3) \\ 0.0433 \ (4) & 0.0469 \ (4) \\ 0.0501 \ (4) & 0.0531 \ (4) \\ 0.0503 \ (14) & 0.0503 \ (14) \\ 0.0674 \ (13) & 0.0589 \ (13) \end{array}$	U^{11} U^{22} U^{33} 0.0466 (3) 0.0494 (3) 0.0340 (3) 0.0433 (4) 0.0469 (4) 0.0484 (4) 0.0501 (4) 0.0531 (4) 0.0393 (4) 0.0503 (14) 0.0503 (14) 0.0429 (14) 0.0674 (13) 0.0589 (13) 0.0357 (11)	U^{11} U^{22} U^{33} U^{12} 0.0466 (3) 0.0494 (3) 0.0340 (3) 0.000 0.0433 (4) 0.0469 (4) 0.0484 (4) 0.0056 (3) 0.0501 (4) 0.0531 (4) 0.0393 (4) -0.0149 (4) 0.0503 (14) 0.0503 (14) 0.0429 (14) 0.0007 (12) 0.0674 (13) 0.0589 (13) 0.0357 (11) 0.0015 (10)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0466 (3) 0.0494 (3) 0.0340 (3) 0.000 0.0038 (3) 0.0433 (4) 0.0469 (4) 0.0484 (4) 0.0056 (3) -0.0105 (3) 0.0501 (4) 0.0531 (4) 0.0393 (4) -0.0149 (4) 0.0100 (3) 0.0503 (14) 0.0503 (14) 0.0429 (14) 0.0007 (12) 0.0031 (11) 0.0674 (13) 0.0589 (13) 0.0357 (11) 0.0015 (10) 0.00655 (10)

O2	0.0601 (13)	0.0514 (12)	0.0382 (11)	-0.0130 (10)	0.0019 (9)	0.0003 (9)
O3	0.0561 (13)	0.0642 (13)	0.0627 (14)	0.0133 (11)	-0.0122 (11)	-0.0187 (11)
O4	0.0714 (15)	0.0633 (14)	0.0503 (13)	0.0041 (12)	-0.0190 (11)	-0.0164 (11)
C1	0.0415 (16)	0.0433 (16)	0.0403 (17)	0.0086 (13)	0.0076 (13)	0.0033 (13)
C2	0.0367 (15)	0.0372 (15)	0.0447 (16)	0.0035 (12)	0.0043 (12)	0.0057 (12)
C3	0.0578 (19)	0.0573 (19)	0.0572 (19)	-0.0092 (16)	0.0151 (16)	0.0032 (15)
C4	0.066 (2)	0.080 (2)	0.079 (3)	-0.0352 (19)	0.021 (2)	0.000 (2)
C5	0.064 (2)	0.089 (3)	0.074 (2)	-0.038 (2)	0.0041 (18)	-0.015 (2)
C6	0.0551 (19)	0.069 (2)	0.0500 (18)	-0.0194 (16)	0.0049 (15)	-0.0061 (16)
C7	0.0343 (15)	0.0415 (15)	0.0446 (16)	-0.0018 (12)	0.0030 (12)	-0.0001 (12)
C8	0.0484 (18)	0.0641 (19)	0.0432 (17)	-0.0151 (15)	0.0091 (13)	-0.0108 (15)
C9	0.0411 (16)	0.0500 (16)	0.0315 (14)	-0.0089 (13)	0.0049 (12)	-0.0065 (13)
C10	0.0353 (15)	0.0589 (17)	0.0338 (15)	-0.0024 (13)	-0.0019 (12)	-0.0091 (13)
C11	0.0410 (17)	0.092 (2)	0.059 (2)	0.0014 (17)	-0.0071 (15)	0.0007 (18)
C12	0.0450 (16)	0.0540 (17)	0.0320 (14)	-0.0026 (13)	-0.0015 (12)	0.0045 (12)
C13	0.0360 (15)	0.0489 (16)	0.0350 (15)	-0.0041 (12)	0.0016 (11)	-0.0074 (13)
C14	0.0441 (17)	0.073 (2)	0.0497 (18)	-0.0077 (15)	0.0059 (14)	0.0017 (15)
C15	0.0391 (15)	0.0421 (15)	0.0369 (15)	0.0007 (12)	-0.0028 (12)	-0.0064 (12)
C16	0.0495 (18)	0.0441 (16)	0.0373 (15)	-0.0046 (13)	0.0004 (13)	-0.0020 (12)
C17	0.0403 (16)	0.0495 (16)	0.0459 (16)	-0.0013 (13)	-0.0059 (12)	-0.0063 (13)
C18	0.0406 (15)	0.0393 (15)	0.0379 (15)	-0.0016 (12)	-0.0013 (12)	0.0030 (12)
C19	0.0554 (19)	0.0470 (17)	0.0455 (17)	0.0052 (14)	-0.0052 (14)	-0.0060 (14)
C20	0.064 (2)	0.0540 (18)	0.058 (2)	0.0218 (16)	-0.0026 (16)	-0.0052 (15)
C21	0.053 (2)	0.070 (2)	0.070 (2)	0.0189 (17)	-0.0132 (17)	0.0002 (18)
C22	0.0482 (18)	0.0578 (19)	0.0544 (19)	0.0003 (15)	-0.0136 (14)	-0.0019 (16)
C23	0.0406 (15)	0.0391 (15)	0.0401 (15)	-0.0011 (12)	-0.0001 (12)	0.0027 (12)
C24	0.0423 (17)	0.0480 (17)	0.0457 (18)	-0.0079 (14)	-0.0008 (14)	-0.0030 (14)
C25	0.0549 (19)	0.062 (2)	0.0505 (19)	-0.0042 (16)	0.0085 (15)	0.0024 (15)
C26	0.053 (2)	0.087 (3)	0.068 (2)	0.001 (2)	0.0125 (17)	-0.015 (2)
C27	0.055 (2)	0.082 (3)	0.088 (3)	0.012 (2)	-0.004 (2)	-0.029 (2)
C28	0.075 (3)	0.064 (2)	0.095 (3)	0.011 (2)	-0.028 (2)	0.002 (2)
C29	0.070 (2)	0.068 (2)	0.057 (2)	0.0068 (18)	0.0022 (17)	0.0139 (18)

Geometric parameters (Å, °)

Fe1—O1	2.412 (2)	C11—H11A	0.9600
Fe1—O1 ⁱ	2.412 (2)	C11—H11B	0.9600
Fe1—O2 ⁱ	2.0400 (18)	C11—H11C	0.9600
Fe1—O2	2.0400 (18)	C12—C13	1.393 (3)
Fe1—N1 ⁱ	2.100 (2)	C12—H12A	0.9300
Fe1—N1	2.100 (2)	C13—C15	1.405 (3)
S2—C18	1.776 (3)	C13—C14	1.505 (4)
S2—C17	1.823 (3)	C14—H14A	0.9600
S3—C7	1.769 (3)	C14—H14B	0.9600
S3—C8	1.818 (3)	C14—H14C	0.9600
N1—C29	1.327 (4)	C15—C16	1.391 (3)
N1—C25	1.338 (3)	C15—C17	1.508 (3)
01—C1	1.252 (3)	C16—H16A	0.9300

O2—C1	1.268 (3)	C17—H17A	0.9700
O3—C24	1.206 (3)	C17—H17B	0.9700
O4—C24	1.336 (3)	C18—C19	1.395 (4)
O4—H4	0.96 (4)	C18—C23	1.411 (3)
C1—C2	1.496 (4)	C19—C20	1.374 (4)
C2—C3	1.388 (4)	С19—Н19А	0.9300
C2—C7	1.412 (4)	C20—C21	1.377 (4)
C3—C4	1.375 (4)	C20—H20A	0.9300
C3—H3A	0.9300	$C_{21} - C_{22}$	1.367 (4)
C4—C5	1.365 (4)	C21—H21A	0.9300
C4—H4A	0.9300	C22—C23	1.394 (4)
C5—C6	1 375 (4)	C22—H22A	0.9300
C5—H5A	0.9300	C_{23} C_{24}	1 489 (4)
C6—C7	1 391 (4)	$C_{25} = C_{26}$	1.165 (1)
С6—Н6А	0.9300	C25—H25A	0.9300
C_{8}	1 516 (3)	$C_{25} = 1125 \Lambda^{2}$	1 350 (5)
	0.9700	$C_{20} = C_{27}$	0.0300
	0.9700	C_{20} C_{20} C_{28}	1 370 (5)
$C_0 = C_1 C_1 C_1 C_2 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	1 302 (3)	$C_{27} = C_{28}$	1.370(3)
C_{2}	1.392(3) 1.201(4)	$C_2/-I_2/A$	1.396(5)
$C_{9} = C_{10}$	1.391(4) 1.282(4)	C_{20} U_{20}	1.380(3)
$C_{10} = C_{12}$	1.363(4)	C20 H20A	0.9300
010-011	1.314 (4)	C29—H29A	0.9300
Oli Ect Ol	147.21(11)	C12 C12 C14	110.9(2)
O_2^{i} FeI O_2^{i}	147.21(11)	C12 - C13 - C14	119.8(2)
O_2 FeI NII	101.80(8)	C13 - C13 - C14	122.2 (2)
O_2 —FeI—NI	99.04 (8)	C13—C14—H14A	109.5
02-FeI-NI	99.04 (8)	CI3-CI4-HI4B	109.5
02—FeI—NI	101.86 (8)	H14A - C14 - H14B	109.5
NI - FeI - NI	100.07 (13)	C13—C14—H14C	109.5
C18—S2—C17	103.62 (12)	H14A—C14—H14C	109.5
C7—S3—C8	103.45 (13)	HI4B—CI4—HI4C	109.5
C29—N1—C25	117.1 (3)	C16—C15—C13	118.5 (2)
C29—N1—Fel	122.5 (2)	C16—C15—C17	119.2 (2)
C25—N1—Fe1	119.7 (2)	C13—C15—C17	122.2 (2)
C1—O2—Fe1	98.68 (16)	C15—C16—C9	122.9 (3)
C24—O4—H4	108 (2)	C15—C16—H16A	118.5
01—C1—O2	120.6 (3)	C9—C16—H16A	118.5
O1—C1—C2	121.0 (2)	C15—C17—S2	108.51 (18)
O2—C1—C2	118.3 (2)	C15—C17—H17A	110.0
C3—C2—C7	119.9 (3)	S2—C17—H17A	110.0
C3—C2—C1	117.7 (2)	C15—C17—H17B	110.0
C7—C2—C1	122.4 (2)	S2—C17—H17B	110.0
C4—C3—C2	121.0 (3)	H17A—C17—H17B	108.4
C4—C3—H3A	119.5	C19—C18—C23	117.5 (2)
С2—С3—НЗА	119.5	C19—C18—S2	121.7 (2)
C5—C4—C3	119.3 (3)	C23—C18—S2	120.7 (2)
C5—C4—H4A	120.3	C20-C19-C18	121.4 (3)
C3—C4—H4A	120.3	С20—С19—Н19А	119.3

C4—C5—C6	121.0 (3)	C18—C19—H19A	119.3
C4—C5—H5A	119.5	C19—C20—C21	120.9 (3)
С6—С5—Н5А	119.5	С19—С20—Н20А	119.6
C5—C6—C7	121.3 (3)	С21—С20—Н20А	119.6
С5—С6—Н6А	119.4	C22—C21—C20	119.1 (3)
С7—С6—Н6А	119.4	C22—C21—H21A	120.5
C6—C7—C2	117.5 (2)	C20—C21—H21A	120.5
C6—C7—S3	122.3 (2)	C21—C22—C23	121.5 (3)
C2-C7-S3	120.3 (2)	C21—C22—H22A	119.3
C9—C8—S3	106.88 (18)	C23—C22—H22A	119.3
С9—С8—Н8А	110.3	C22—C23—C18	119.7 (2)
S3—C8—H8A	110.3	C22—C23—C24	118.8 (2)
C9—C8—H8B	110.3	C18—C23—C24	121.5 (2)
S3—C8—H8B	110.3	03-C24-04	122.7(3)
H8A—C8—H8B	108.6	03-C24-C23	124.1 (2)
$C_{16} - C_{9} - C_{10}$	118 3 (2)	04-C24-C23	1132(3)
C16 - C9 - C8	119 3 (3)	N1-C25-C26	122.9(3)
C10-C9-C8	122.4 (2)	N1-C25-H25A	118 5
C_{12} C_{10} C_{9}	1122.1(2) 119.0(2)	$C_{26} = C_{25} = H_{25A}$	118.5
$C_{12} = C_{10} = C_{11}$	119.5 (2)	$C_{20} = C_{20} = C$	119.8 (3)
C9-C10-C11	121 6 (3)	$C_{27} = C_{26} = H_{26A}$	120.1
C10-C11-H11A	109 5	C_{25} C_{26} H_{26A}	120.1
C10-C11-H11B	109.5	$C_{25} = C_{20} = C_{20} = C_{20}$	120.1 1190(3)
	109.5	$C_{26} = C_{27} = H_{27} = H_{27}$	120.5
	109.5	$C_{20} = C_{27} = H_{27A}$	120.5
	109.5	$C_{20} = C_{27} = H_{27} H_{27}$	120.3 118 2 (3)
H11B_C11_H11C	109.5	$C_{27} = C_{28} = C_{29}$	120.9
C_{10} C_{12} C_{13}	107.5	$C_{20} = C_{20} = H_{20} A$	120.9
C10-C12-C13	118.4	N1 - C29 - C28	120.9 122.9(3)
$C_{10} = C_{12} = H_{12A}$	118.4	N1 = C29 = C28	122.9 (3)
$C_{12} = C_{12} = C_{12} = C_{12}$	110.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.5
012-015-015	110.0 (2)	C20-C29-1129A	110.5
O2 ⁱ —Fe1—N1—C29	-146.8 (2)	C10-C12-C13-C14	-177.2 (2)
O2—Fe1—N1—C29	58.7 (2)	C12-C13-C15-C16	-2.1 (4)
N1 ⁱ —Fe1—N1—C29	-42.9 (2)	C14—C13—C15—C16	176.3 (2)
O2 ⁱ —Fe1—N1—C25	43.1 (2)	C12—C13—C15—C17	179.6 (2)
O2—Fe1—N1—C25	-111.5 (2)	C14—C13—C15—C17	-1.9 (4)
N1 ⁱ —Fe1—N1—C25	147.0 (2)	C13—C15—C16—C9	-0.4 (4)
O2 ⁱ —Fe1—O2—C1	-39.76 (14)	C17—C15—C16—C9	177.9 (2)
N1 ⁱ —Fe1—O2—C1	-168.90 (15)	C10—C9—C16—C15	3.8 (4)
N1—Fe1—O2—C1	88.73 (16)	C8—C9—C16—C15	-176.1 (2)
Fe1-02-C1-01	-7.3 (3)	C16—C15—C17—S2	98.4 (2)
Fe1-02-C1-C2	174.59 (18)	C13—C15—C17—S2	-83.3 (3)
O1—C1—C2—C3	-16.7 (4)	C18—S2—C17—C15	179.62 (18)
O2—C1—C2—C3	161.4 (2)	C17—S2—C18—C19	-1.8 (3)
O1—C1—C2—C7	163.4 (2)	C17—S2—C18—C23	176.1 (2)
O2—C1—C2—C7	-18.5 (4)	C23—C18—C19—C20	1.8 (4)
C7—C2—C3—C4	0.6 (4)	S2-C18-C19-C20	179.7 (2)
	· · ·		· /

C1—C2—C3—C4	-179.4 (3)	C18—C19—C20—C21	0.7 (5)
C2—C3—C4—C5	-0.8 (5)	C19—C20—C21—C22	-2.0 (5)
C3—C4—C5—C6	0.1 (6)	C20—C21—C22—C23	0.9 (5)
C4—C5—C6—C7	0.9 (6)	C21—C22—C23—C18	1.6 (4)
C5—C6—C7—C2	-1.2 (4)	C21—C22—C23—C24	-177.2 (3)
C5—C6—C7—S3	179.7 (3)	C19—C18—C23—C22	-2.9 (4)
C3—C2—C7—C6	0.4 (4)	S2—C18—C23—C22	179.2 (2)
C1—C2—C7—C6	-179.6 (2)	C19—C18—C23—C24	175.8 (2)
C3—C2—C7—S3	179.5 (2)	S2-C18-C23-C24	-2.1 (3)
C1—C2—C7—S3	-0.5 (3)	C22—C23—C24—O3	-163.3 (3)
C8—S3—C7—C6	19.2 (3)	C18—C23—C24—O3	18.0 (4)
C8—S3—C7—C2	-159.9 (2)	C22—C23—C24—O4	17.1 (4)
C7—S3—C8—C9	177.75 (19)	C18—C23—C24—O4	-161.6 (2)
S3—C8—C9—C16	-82.8 (3)	C29—N1—C25—C26	-2.6 (4)
S3—C8—C9—C10	97.3 (3)	Fe1—N1—C25—C26	168.0 (2)
C16—C9—C10—C12	-4.5 (4)	N1-C25-C26-C27	1.2 (5)
C8—C9—C10—C12	175.4 (2)	C25—C26—C27—C28	0.9 (5)
C16—C9—C10—C11	176.8 (2)	C26—C27—C28—C29	-1.6 (5)
C8—C9—C10—C11	-3.2 (4)	C25—N1—C29—C28	1.9 (5)
C9—C10—C12—C13	2.1 (4)	Fe1—N1—C29—C28	-168.5 (3)
C11—C10—C12—C13	-179.2 (3)	C27—C28—C29—N1	0.2 (5)
C10-C12-C13-C15	1.3 (4)		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H… <i>A</i>
04—H4…O1 ⁱⁱ	0.96 (4)	1.77 (4)	2.702 (3)	162 (4)
C16—H16A····O3 ⁱⁱⁱ	0.93	2.54	3.421 (3)	158

Symmetry codes: (ii) x-1/2, y-1/2, -z+1/2; (iii) -x-1/2, y+1/2, z.