

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[(E)-(1-Phenylethylidene)amino]urea methanol monosolvate

Guang-Bin Liu,^a Peng-Sheng Chen,^b Chang-Xiang Liu,^a Ling Fu^a and Xu-Liang Nie^a*

^aDepartment of Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China, and ^bGuanlian Middle School of Wuning, Jiangxi Wuning 332302, People's Republic of China Correspondence e-mail: niexuliang1981@163.com

Received 28 December 2010; accepted 4 January 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.128; data-to-parameter ratio = 14.7.

In the title compound, $C_9H_{11}N_3O \cdot CH_4O$, the semicarbazone moiety is nearly planar [maximum deviation = 0.017(2) Å] and is twisted by a dihedral angle of $29.40 (13)^{\circ}$ with respect to the phenyl ring. The semicarbazone moiety and phenyl ring are located on opposite sides of the C=N bond, showing the E configuration. An intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding network occurs in the crystal structure.

Related literature

For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005). For related structures, see: Fun et al. (2009a,b).

Experimental

Crystal data C₉H₁₁N₃O·CH₄O $M_r = 209.25$

Monoclinic, $P2_1/n$ a = 6.629 (3) Å

b = 8.371 (4) Å c = 20.329(9) Å $\beta = 99.181 \ (5)^{\circ}$ V = 1113.6 (8) Å³ Z = 4

Data collection F

Bruker APEXII CCD	2057 independent reflections
diffractometer	1617 reflections with $I > 2\sigma(I)$
8148 measured reflections	$R_{\rm int} = 0.027$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.044$	140 parameters

 $wR(F^2) = 0.128$ S = 1.072057 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2 - H2A \cdots O1^{i}$	0.82	1.93	2.745 (2)	177
$N2 - H8 \cdot \cdot \cdot O1^{ii}$	0.86	2.10	2.936 (2)	164
$N3-H3A\cdots O2^{iii}$	0.86	2.12	2.953 (2)	164
$N3-H3B\cdots O2$	0.86	2.36	3.042 (2)	137

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y, -z + 2.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Research Foundation of Educational Department of Jiangxi Province [GJJ10421] and the Natural Science Foundation of Jiangxi Agricultural University, China (09003321).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5132).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089-1094. Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, 01591-01592.

Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, 01619-01620.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.24 \times 0.22 \times 0.18 \text{ mm}$

H-atom parameters constrained

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.18 e Å⁻³

T = 296 K

supporting information

Acta Cryst. (2011). E67, o345 [doi:10.1107/S1600536811000225]

[(E)-(1-Phenylethylidene)amino]urea methanol monosolvate

Guang-Bin Liu, Peng-Sheng Chen, Chang-Xiang Liu, Ling Fu and Xu-Liang Nie

S1. Comment

The semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. It is widely used in field of organometalics (Chandra & Gupta, 2005). Several crystal structures have recently reported by Fun *et al.*, 2009a,b. Here we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the semicarbazone group is nearly planar, with the maximum deviation of 0.017 (2) Å. The mean plane of semicarbazone group and the benzene ring makes a dihedral angle of 29.40 (13)°. In the crystal structure there is also a methanol molecular which is stabilized by N—H···O hydrogen bond with the semicarbazone group. The methanol molecular further linked the semicarbazone group adjacent into a one-dimensional chain by N—H···O hydrogen bonds formed along the *b* axis. These chains are further linked *via* pairs of O—H···O hydrogen bonds involving the methanol O atoms and semicarbazone O atoms to a two-dimensional hydrogen bonds framework (Fig. 3).

S2. Experimental

Semicarbazide hydrochloride (11 g, 0.1 mol) was dissolved in water (100 ml), and sodium acetate (16.4 g, 0.2 mol) was added and dissolved by stirring at room temperature. To this, acetophenone (11.4 g, 0.095 mol) in ethanol (60 ml) was then added, and the mixture stirred well for 2 h at 323 K using a modified Vilsmeier-Haak reaction. The separated crystals were filtered, washed with cold water and recrystallized from methanol solution.

S3. Refinement

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.93–0.96, O—H = 0.82 and N—H = 0.86 Å, with $U_{iso}(H) = 1.5 U_{eq}(C,O)$ for methyl and hydroxyl H atoms and $1.2U_{eq}(C,N)$ for the others.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

The crystal packing of (I), showing a one-dimensional chain down the b axis; H-bonds are shown as dashed lines.

F(000) = 448

 $\theta = 2.6 - 28.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless $0.24 \times 0.22 \times 0.18 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.248 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2808 reflections

Figure 3

The crystal packing of (I), showing a two-dimensional sheet; H-bonds are shown as dashed lines.

[(E)-(1-Phenylethylidene)amino]urea methanol monosolvate

Crystal data C₉H₁₁N₃O·CH₄O $M_r = 209.25$ Monoclinic, $P_{1/n}$ Hall symbol: -P 2yn a = 6.629 (3) Å b = 8.371 (4) Å c = 20.329 (9) Å $\beta = 99.181$ (5)° V = 1113.6 (8) Å³ Z = 4

Data collection

Bruker APEXII CCD	1617 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
Graphite monochromator	$h = -8 \rightarrow 8$
φ and ω scans	$k = -9 \rightarrow 10$
8148 measured reflections	$l = -24 \rightarrow 24$
2057 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.128$ S = 1.072057 reflections 140 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 0.3389P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.020 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0487 (3)	0.6825 (3)	0.73837 (11)	0.0636 (6)
H1	0.0233	0.7479	0.7010	0.076*
C2	-0.0980 (3)	0.5772 (3)	0.75182 (11)	0.0630 (6)
H2	-0.2233	0.5717	0.7238	0.076*
C3	-0.0590 (3)	0.4793 (3)	0.80720 (10)	0.0550 (6)
H3	-0.1582	0.4076	0.8163	0.066*
C4	0.1262 (3)	0.4875 (2)	0.84901 (9)	0.0438 (5)
H4	0.1504	0.4216	0.8863	0.053*
C5	0.2773 (2)	0.5931 (2)	0.83614 (8)	0.0371 (4)
C6	0.2342 (3)	0.6916 (2)	0.78033 (10)	0.0521 (5)
H6	0.3319	0.7645	0.7712	0.063*
C7	0.6059 (3)	0.7470 (2)	0.88452 (10)	0.0509 (5)
H7A	0.6457	0.7752	0.9305	0.076*
H7B	0.5268	0.8322	0.8617	0.076*
H7C	0.7257	0.7294	0.8645	0.076*
C8	0.4800 (2)	0.5973 (2)	0.87964 (8)	0.0362 (4)
C9	0.7858 (2)	0.3143 (2)	0.97715 (8)	0.0361 (4)
C10	0.0959 (4)	0.0359 (3)	0.89062 (11)	0.0673 (6)
H10A	-0.0277	0.0967	0.8798	0.101*
H10B	0.0627	-0.0746	0.8957	0.101*
H10C	0.1762	0.0466	0.8555	0.101*
N1	0.5332 (2)	0.46585 (17)	0.91022 (7)	0.0362 (4)
N2	0.7209 (2)	0.45770 (17)	0.95027 (7)	0.0398 (4)
H8	0.7957	0.5416	0.9582	0.048*
01	0.96431 (17)	0.30074 (14)	1.00688 (6)	0.0458 (4)
N3	0.6552 (2)	0.19317 (18)	0.96944 (9)	0.0526 (5)
H3A	0.6927	0.1007	0.9853	0.063*
H3B	0.5330	0.2071	0.9486	0.063*
O2	0.20857 (19)	0.09309 (17)	0.95077 (7)	0.0544 (4)
H2A	0.1370	0.1538	0.9688	0.082*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0641 (14)	0.0727 (15)	0.0482 (12)	0.0140 (12)	-0.0092 (10)	0.0110 (11)
C2	0.0449 (11)	0.0791 (16)	0.0569 (13)	0.0150 (11)	-0.0162 (10)	-0.0122 (12)

C3	0.0361 (10)	0.0651 (13)	0.0613 (13)	-0.0020 (9)	0.0001 (9)	-0.0118 (11)
C4	0.0392 (9)	0.0484 (11)	0.0427 (10)	0.0015 (8)	0.0032 (8)	0.0004 (8)
C5	0.0372 (9)	0.0385 (9)	0.0344 (9)	0.0060 (7)	0.0021 (7)	-0.0030 (7)
C6	0.0502 (11)	0.0547 (12)	0.0484 (11)	0.0029 (9)	-0.0009 (9)	0.0092 (9)
C7	0.0467 (10)	0.0442 (11)	0.0569 (12)	-0.0038 (8)	-0.0063 (9)	0.0047 (9)
C8	0.0360 (9)	0.0400 (10)	0.0319 (9)	0.0005 (7)	0.0030(7)	0.0003 (7)
C9	0.0318 (8)	0.0383 (9)	0.0365 (9)	-0.0005 (7)	0.0008 (7)	0.0000(7)
C10	0.0706 (14)	0.0675 (15)	0.0605 (14)	-0.0034 (12)	0.0005 (12)	-0.0025 (11)
N1	0.0310 (7)	0.0409 (8)	0.0346 (8)	-0.0004 (6)	-0.0012 (6)	0.0024 (6)
N2	0.0334 (7)	0.0370 (8)	0.0450 (9)	-0.0043 (6)	-0.0058 (6)	0.0042 (6)
01	0.0337 (7)	0.0422 (7)	0.0562 (8)	0.0000 (5)	-0.0085 (6)	0.0011 (6)
N3	0.0356 (8)	0.0401 (9)	0.0758 (12)	-0.0042 (7)	-0.0096 (8)	0.0125 (8)
O2	0.0420 (7)	0.0510 (9)	0.0658 (9)	0.0044 (6)	-0.0047 (6)	-0.0037 (7)

Geometric parameters (Å, °)

C1—C2	1.372 (3)	C7—H7C	0.9600	
C1—C6	1.382 (3)	C8—N1	1.285 (2)	
C1—H1	0.9300	C9—O1	1.2453 (19)	
C2—C3	1.383 (3)	C9—N3	1.326 (2)	
С2—Н2	0.9300	C9—N2	1.360 (2)	
C3—C4	1.379 (2)	C10—O2	1.411 (2)	
С3—Н3	0.9300	C10—H10A	0.9600	
C4—C5	1.391 (3)	C10—H10B	0.9600	
C4—H4	0.9300	C10—H10C	0.9600	
C5—C6	1.395 (3)	N1—N2	1.3757 (18)	
C5—C8	1.486 (2)	N2—H8	0.8600	
С6—Н6	0.9300	N3—H3A	0.8600	
С7—С8	1.500 (3)	N3—H3B	0.8600	
С7—Н7А	0.9600	O2—H2A	0.8200	
С7—Н7В	0.9600			
C2-C1-C6	120.1 (2)	H7A—C7—H7C	109.5	
C2-C1-H1	120.0	H7B—C7—H7C	109.5	
C6—C1—H1	120.0	N1—C8—C5	114.83 (15)	
C1—C2—C3	119.75 (18)	N1	125.18 (15)	
C1—C2—H2	120.1	C5—C8—C7	119.98 (15)	
С3—С2—Н2	120.1	O1—C9—N3	122.64 (15)	
C4—C3—C2	120.3 (2)	O1—C9—N2	119.38 (15)	
С4—С3—Н3	119.8	N3—C9—N2	117.96 (14)	
С2—С3—Н3	119.8	O2-C10-H10A	109.5	
C3—C4—C5	120.83 (18)	O2-C10-H10B	109.5	
C3—C4—H4	119.6	H10A—C10—H10B	109.5	
C5—C4—H4	119.6	O2—C10—H10C	109.5	
C4—C5—C6	117.92 (16)	H10A—C10—H10C	109.5	
C4—C5—C8	120.83 (15)	H10B—C10—H10C	109.5	
C6—C5—C8	121.22 (16)	C8—N1—N2	118.77 (14)	
C1—C6—C5	121.1 (2)	C9—N2—N1	118.67 (13)	

С1—С6—Н6	119.5	C9—N2—H8	120.7
С5—С6—Н6	119.5	N1—N2—H8	120.7
С8—С7—Н7А	109.5	C9—N3—H3A	120.0
С8—С7—Н7В	109.5	C9—N3—H3B	120.0
H7A—C7—H7B	109.5	H3A—N3—H3B	120.0
С8—С7—Н7С	109.5	C10—O2—H2A	109.5
C6-C1-C2-C3	-0.5 (3)	C6-C5-C8-N1	-152.23 (17)
C1—C2—C3—C4	0.2 (3)	C4—C5—C8—C7	-154.55 (18)
C2—C3—C4—C5	-0.4 (3)	C6—C5—C8—C7	27.1 (3)
C3—C4—C5—C6	0.9 (3)	C5—C8—N1—N2	178.39 (14)
C3—C4—C5—C8	-177.47 (17)	C7—C8—N1—N2	-0.9 (3)
C2-C1-C6-C5	1.0 (3)	O1—C9—N2—N1	171.57 (15)
C4—C5—C6—C1	-1.2 (3)	N3—C9—N2—N1	-7.4 (2)
C8—C5—C6—C1	177.18 (18)	C8—N1—N2—C9	-173.38 (16)
C4—C5—C8—N1	26.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A···O1 ⁱ	0.82	1.93	2.745 (2)	177
N2—H8···O1 ⁱⁱ	0.86	2.10	2.936 (2)	164
N3—H3A····O2 ⁱⁱⁱ	0.86	2.12	2.953 (2)	164
N3—H3 <i>B</i> ···O2	0.86	2.36	3.042 (2)	137

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) -*x*+1, -*y*, -*z*+2.