organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Carb­­oxy­phen­yl)-1H-imidazol-3-ium chloride dihydrate

aDepartment of Chemistry, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: zhpzhp@263.net

(Received 30 December 2010; accepted 12 January 2011; online 22 January 2011)

In the crystal structure of the title compound, C10H9N2O2+·Cl·2H2O, the components are linked by O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. In the cation, the imidazole ring is oriented at a dihedral angle of 13.67 (17)° with respect to the benzene ring. In the crystal, ππ stacking occurs between nearly parallel benzene rings, which are oriented at a dihedral angle of 3.4 (1)°, the centroid–centroid distance being 3.798 (3) Å.

Related literature

For related imidazole-containing compounds, see: Nyamori & Bala (2008[Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.]); Nie et al. (2009[Nie, J.-J., Li, J.-H. & Xu, D.-J. (2009). Acta Cryst. E65, m822-m823.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N2O2+·Cl·2H2O

  • Mr = 260.67

  • Orthorhombic, P b c a

  • a = 7.427 (5) Å

  • b = 17.708 (5) Å

  • c = 18.748 (5) Å

  • V = 2465.7 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.940

  • 14555 measured reflections

  • 2165 independent reflections

  • 1515 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.146

  • S = 0.96

  • 2165 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.21 2.822 (3) 128
N2—H2⋯Cl1ii 0.86 2.62 3.231 (2) 129
O2—H7⋯O4iii 0.82 1.77 2.594 (3) 177
O3—H10⋯Cl1iv 0.83 (4) 2.36 (4) 3.150 (3) 159 (3)
O3—H11⋯Cl1v 0.94 (5) 2.22 (5) 3.141 (3) 168 (3)
O4—H12⋯O3 0.76 (4) 1.99 (4) 2.718 (4) 162 (4)
O4—H13⋯Cl1 0.86 (4) 2.22 (4) 3.066 (4) 172 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazol - based materials had been investigated for their electrical and optical properties. Beside, the introduction about the structure of its complex has been reported (Nie et al., 2009). The title molecule that we has designed and synthesized is a good intermediate and penetratingly investigated. In the title molecule(I) (Fig.1), the bond lengths and angles show normal values. The imidazole ring is twisted out of the plane of the center benzene ring at a dihedral angle of 13.67 (17)°. In the title molecule (I) (Fig.2), the neighboring molecules connect through O—H···O, N—H···O, O—H···Cl and N—H···Cl hydrogen bonds (Table 1). ππ stacking is observed between nearly parallel benzene rings, the centroids distance being 3.798 (3) Å.

Related literature top

For related imidazole-containing compounds, see: Nyamori & Bala (2008); Nie et al. (2009).

Experimental top

A 150 ml round-bottom flask was charged with a magnetic stirrer and a reflux condenser, iminazole (44 mmol), K2CO3 (6.00 g, 43 mmol), 30 ml DMSO and a little Aliquat 336 were added. 4-Fluorobenzaldehyde (4.5 ml, 42 mmol) was added dropwise to the mixture at 363 K and stirred for 15 min. Then the reaction mixture was refluxed for 24 h at 353 K, cooled to room temperature, poured into 150 ml ice-water and filtered. The primrose yellow crude product was obtained, washed with distilled water, and dried in vacuo at room temperature, then purified by recrystallization with ethyl acetate to give the desired analytical pure intermediate products. Intermediate product (12.5 mmol) and 15 ml 20% (wt) NaOH (aq) were added to a round-bottom flask equipped with a magnetic stirrer and a reflux condenser at 333 K for 30 min. Then AgNO3 (4.00 g, 24 mmol) was added to the mixture group by group. The reaction mixture was refluxed for 24 h at 333 K, cooled to room temperature and filtered. Excessive HCl (1 M) was added to the filtrate and adjust pH to 2, a great deal of sediments were obtained and then filtered. The crude product was recrystallized from ethanol-water solution.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 and C—H = 0.93 Å, Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule(I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The H-bond and weak ππ interaction diagram of the title molecule(I).
1-(4-Carboxyphenyl)-1H-imidazol-3-ium chloride dihydrate top
Crystal data top
C10H9N2O2+·Cl·2H2OF(000) = 1088
Mr = 260.67Dx = 1.404 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 3445 reflections
a = 7.427 (5) Åθ = 2.3–21.7°
b = 17.708 (5) ŵ = 0.32 mm1
c = 18.748 (5) ÅT = 298 K
V = 2465.7 (19) Å3Block, yellow
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2165 independent reflections
Radiation source: fine-focus sealed tube1515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 87
Tmin = 0.912, Tmax = 0.940k = 2116
14555 measured reflectionsl = 1722
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
2165 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H9N2O2+·Cl·2H2OV = 2465.7 (19) Å3
Mr = 260.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.427 (5) ŵ = 0.32 mm1
b = 17.708 (5) ÅT = 298 K
c = 18.748 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1515 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.940Rint = 0.033
14555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.20 e Å3
2165 reflectionsΔρmin = 0.32 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99581 (9)0.35765 (4)0.14987 (4)0.0637 (3)
O30.4071 (3)0.34344 (12)0.18640 (13)0.0661 (6)
N10.6552 (3)0.13527 (10)0.12446 (10)0.0467 (5)
C40.6689 (3)0.11991 (13)0.19963 (12)0.0423 (6)
O40.6325 (4)0.41591 (12)0.09501 (10)0.0628 (6)
O20.6026 (3)0.11860 (11)0.46109 (9)0.0678 (6)
H70.61540.10680.50310.102*
O10.7751 (3)0.01818 (11)0.44419 (10)0.0717 (6)
C100.6934 (3)0.07130 (14)0.42051 (13)0.0484 (6)
C60.7468 (3)0.03739 (12)0.29454 (12)0.0473 (6)
H60.79360.00830.31050.057*
C70.6859 (3)0.09017 (12)0.34359 (12)0.0436 (6)
C50.7388 (3)0.05180 (13)0.22262 (12)0.0481 (6)
H50.77980.01630.18990.058*
C80.6198 (3)0.15821 (13)0.31931 (13)0.0483 (6)
H80.58050.19410.35200.058*
C90.6110 (3)0.17379 (12)0.24755 (13)0.0469 (6)
H90.56670.21990.23160.056*
N20.6424 (3)0.12032 (12)0.01107 (11)0.0572 (6)
H20.64540.09920.03020.069*
C30.6691 (3)0.08596 (14)0.07173 (13)0.0532 (7)
H30.69410.03480.07710.064*
C20.6095 (6)0.19392 (17)0.02329 (16)0.0848 (11)
C10.6184 (6)0.20415 (17)0.09362 (16)0.0934 (12)
H10.60260.24960.11760.112*
H120.554 (5)0.402 (2)0.117 (2)0.079 (13)*
H130.734 (5)0.3965 (18)0.1065 (16)0.076 (11)*
H110.283 (6)0.341 (2)0.179 (2)0.118 (15)*
H100.421 (6)0.359 (2)0.228 (2)0.112 (15)*
H40.597 (5)0.230 (2)0.017 (2)0.112 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0640 (5)0.0782 (5)0.0489 (5)0.0013 (3)0.0008 (3)0.0005 (3)
O30.0661 (15)0.0778 (14)0.0545 (14)0.0097 (11)0.0031 (11)0.0011 (11)
N10.0583 (12)0.0435 (11)0.0383 (11)0.0004 (9)0.0028 (9)0.0008 (9)
C40.0480 (13)0.0421 (12)0.0370 (13)0.0030 (10)0.0038 (10)0.0021 (10)
O40.0735 (15)0.0696 (13)0.0452 (12)0.0004 (13)0.0000 (12)0.0038 (9)
O20.0905 (15)0.0737 (12)0.0393 (10)0.0220 (11)0.0038 (10)0.0017 (10)
O10.0959 (15)0.0695 (12)0.0497 (11)0.0272 (12)0.0011 (10)0.0107 (9)
C100.0514 (14)0.0493 (13)0.0444 (14)0.0007 (12)0.0044 (12)0.0011 (12)
C60.0571 (14)0.0351 (11)0.0497 (14)0.0043 (11)0.0047 (12)0.0016 (11)
C70.0460 (13)0.0431 (13)0.0416 (13)0.0026 (10)0.0050 (10)0.0009 (10)
C50.0623 (15)0.0406 (13)0.0413 (13)0.0032 (11)0.0000 (12)0.0057 (11)
C80.0602 (16)0.0449 (13)0.0397 (14)0.0045 (11)0.0018 (11)0.0059 (10)
C90.0583 (15)0.0374 (11)0.0450 (14)0.0064 (11)0.0015 (11)0.0012 (11)
N20.0716 (15)0.0631 (14)0.0369 (12)0.0002 (11)0.0019 (10)0.0056 (10)
C30.0677 (17)0.0500 (14)0.0420 (14)0.0050 (12)0.0007 (12)0.0075 (12)
C20.152 (3)0.0592 (19)0.0428 (17)0.011 (2)0.0073 (19)0.0062 (14)
C10.186 (4)0.0480 (16)0.0467 (17)0.017 (2)0.010 (2)0.0026 (13)
Geometric parameters (Å, º) top
O3—H110.94 (5)C6—C71.387 (3)
O3—H100.83 (4)C6—H60.9300
N1—C31.323 (3)C7—C81.379 (3)
N1—C11.377 (3)C5—H50.9300
N1—C41.439 (3)C8—C91.375 (3)
C4—C91.379 (3)C8—H80.9300
C4—C51.382 (3)C9—H90.9300
O4—H120.76 (4)N2—C31.305 (3)
O4—H130.86 (3)N2—C21.346 (4)
O2—C101.317 (3)N2—H20.8600
O2—H70.8200C3—H30.9300
O1—C101.204 (3)C2—C11.333 (4)
C10—C71.481 (3)C2—H40.99 (4)
C6—C51.373 (3)C1—H10.9300
H11—O3—H10106 (4)C4—C5—H5120.5
C3—N1—C1106.6 (2)C9—C8—C7121.0 (2)
C3—N1—C4127.0 (2)C9—C8—H8119.5
C1—N1—C4126.3 (2)C7—C8—H8119.5
C9—C4—C5121.2 (2)C8—C9—C4118.9 (2)
C9—C4—N1119.0 (2)C8—C9—H9120.5
C5—C4—N1119.8 (2)C4—C9—H9120.5
H12—O4—H13115 (3)C3—N2—C2109.3 (2)
C10—O2—H7109.5C3—N2—H2125.3
O1—C10—O2122.8 (2)C2—N2—H2125.3
O1—C10—C7123.6 (2)N2—C3—N1109.4 (2)
O2—C10—C7113.6 (2)N2—C3—H3125.3
C5—C6—C7120.8 (2)N1—C3—H3125.3
C5—C6—H6119.6C1—C2—N2106.9 (3)
C7—C6—H6119.6C1—C2—H4132 (2)
C8—C7—C6119.1 (2)N2—C2—H4121 (2)
C8—C7—C10122.1 (2)C2—C1—N1107.8 (3)
C6—C7—C10118.8 (2)C2—C1—H1126.1
C6—C5—C4119.0 (2)N1—C1—H1126.1
C6—C5—H5120.5
C3—N1—C4—C9165.3 (2)C6—C7—C8—C91.0 (4)
C1—N1—C4—C912.2 (4)C10—C7—C8—C9178.7 (2)
C3—N1—C4—C514.4 (4)C7—C8—C9—C40.3 (4)
C1—N1—C4—C5168.1 (3)C5—C4—C9—C81.5 (4)
C5—C6—C7—C81.1 (4)N1—C4—C9—C8178.3 (2)
C5—C6—C7—C10178.6 (2)C2—N2—C3—N10.2 (3)
O1—C10—C7—C8167.9 (3)C1—N1—C3—N20.3 (3)
O2—C10—C7—C811.7 (3)C4—N1—C3—N2177.6 (2)
O1—C10—C7—C612.4 (4)C3—N2—C2—C10.6 (4)
O2—C10—C7—C6168.0 (2)N2—C2—C1—N10.7 (4)
C7—C6—C5—C40.0 (4)C3—N1—C1—C20.6 (4)
C9—C4—C5—C61.4 (4)C4—N1—C1—C2177.3 (3)
N1—C4—C5—C6178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.212.822 (3)128
N2—H2···Cl1ii0.862.623.231 (2)129
O2—H7···O4iii0.821.772.594 (3)177
O3—H10···Cl1iv0.83 (4)2.36 (4)3.150 (3)159 (3)
O3—H11···Cl1v0.94 (5)2.22 (5)3.141 (3)168 (3)
O4—H12···O30.76 (4)1.99 (4)2.718 (4)162 (4)
O4—H13···Cl10.86 (4)2.22 (4)3.066 (4)172 (3)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H9N2O2+·Cl·2H2O
Mr260.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.427 (5), 17.708 (5), 18.748 (5)
V3)2465.7 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.912, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
14555, 2165, 1515
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.146, 0.96
No. of reflections2165
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.212.822 (3)128
N2—H2···Cl1ii0.862.623.231 (2)129
O2—H7···O4iii0.821.772.594 (3)177
O3—H10···Cl1iv0.83 (4)2.36 (4)3.150 (3)159 (3)
O3—H11···Cl1v0.94 (5)2.22 (5)3.141 (3)168 (3)
O4—H12···O30.76 (4)1.99 (4)2.718 (4)162 (4)
O4—H13···Cl10.86 (4)2.22 (4)3.066 (4)172 (3)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1/2, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x1, y, z.
 

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (21071001), the Education Committee of Anhui Province (KJ2009A52, KJ2010A30), the Team for Scientific Innovation Foundation of Anhui Province (2006 K J007TD), the Ministry of Education Person with Ability Foundation of Anhui University, the Science and Technological Fund of Anhui Province for Outstanding Youth (10040606Y22), and the 211 Project of Anhui University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNie, J.-J., Li, J.-H. & Xu, D.-J. (2009). Acta Cryst. E65, m822–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds