organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[1-(4-Chloro­phen­yl)eth­yl]-1,3-thia­zinane-2-thione

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: nyhxpyjs@yahoo.com.cn

(Received 6 January 2011; accepted 13 January 2011; online 29 January 2011)

In the title compound, C12H14ClNS2, the thia­zole ring adopts an envelope conformation; the basal plane is nearly perpendicular to the benzene ring at a dihedral angle of 85.72 (5)°. Weak inter­molecular C—H⋯S hydrogen bonding is present in the crystal structure.

Related literature

For the biological activity of thia­zole compounds, see: Amir et al. (2006[Amir, N., Motonishi, M., Fujita, M., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2006). Eur. J. Inorg. Chem. pp. 1041-1049.]). For a related structure, see: Cunico et al. (2007[Cunico, W., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o411-o414.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClNS2

  • Mr = 271.81

  • Orthorhombic, P b c a

  • a = 11.260 (2) Å

  • b = 11.888 (2) Å

  • c = 18.978 (4) Å

  • V = 2540.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 113 K

  • 0.18 × 0.14 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.931

  • 16988 measured reflections

  • 2932 independent reflections

  • 2605 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.11

  • 2925 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯S2i 0.97 2.85 3.773 (2) 158
C10—H10B⋯S2ii 0.97 2.77 3.701 (2) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, compounds containing a 1,3-thiazinane group have attracted much interest because the 1,3-thiazinane ring system are well known as its efficient insecticidal activity for a wide variety of crops (Amir et al., 2006). The title compound (I) was synthesized as a new compound with better biological activity. We report here the crystal structure of (I).

In (I) all bond lengths and angles are normal and in a good agreement with those reported previously (Cunico et al., 2007). The thiazole ring is in and envelope conformation with the –CH2– group bonded to the S1 atom forming the flap. The 1,3-thiazinane-2-thione ring forms two dihedral angles are 85.99 (2)° [S1/S2/N1/C7/C9/C11/C12] and 77.68 (2)° [N1/C9/C10/C11/C12] with the benzene ring respectively. The crystal structure is stabilized by weak intermolecular C–H···S hydrogen bonds.

Related literature top

For the biological activity of thiazole compounds, see: Amir et al. (2006). For a related structure, see: Cunico et al. (2007).

Experimental top

1,3-Thiazinane-2-thione 1.33 g (10.0 mmol) and deacid reagent potassium carbonate 1.38 g (5.0 mmol) were added in a flask equipped with stirrer, the solvent acetonitrile (20 ml) was added and the mixture was stirred for 0.5 h. Then 1-chloro-4-(1-chloroethyl)benzene 1.74 g (10.0 mmol) was added dropwising within 2 h at 333 K. The mixture was stirred for 8 h at 433 K. Upon cooling at room temperature. then the solid was filterred, the filter-cake was washed twice by acetonitrile. Crystallized from methanol to afford the title compound 2.0 g (74% yield) Single crystals suitable for X-ray measurement were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.
3-[1-(4-Chlorophenyl)ethyl]-1,3-thiazinane-2-thione top
Crystal data top
C12H14ClNS2F(000) = 1136
Mr = 271.81Dx = 1.421 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5973 reflections
a = 11.260 (2) Åθ = 2.2–27.5°
b = 11.888 (2) ŵ = 0.60 mm1
c = 18.978 (4) ÅT = 113 K
V = 2540.5 (9) Å3Block, colorless
Z = 80.18 × 0.14 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2932 independent reflections
Radiation source: rotating anode2605 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.050
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1414
Tmin = 0.900, Tmax = 0.931k = 715
16988 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.9612P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
2925 reflectionsΔρmax = 0.29 e Å3
147 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C12H14ClNS2V = 2540.5 (9) Å3
Mr = 271.81Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.260 (2) ŵ = 0.60 mm1
b = 11.888 (2) ÅT = 113 K
c = 18.978 (4) Å0.18 × 0.14 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2605 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.931Rint = 0.050
16988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.11Δρmax = 0.29 e Å3
2925 reflectionsΔρmin = 0.26 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02163 (5)0.84121 (4)0.54940 (3)0.03747 (15)
S10.12139 (4)0.46585 (4)0.16831 (2)0.02721 (14)
S20.00573 (4)0.34132 (4)0.27142 (2)0.02514 (13)
N10.17516 (12)0.47749 (11)0.30690 (7)0.0190 (3)
C10.03561 (15)0.61986 (15)0.39541 (9)0.0223 (4)
H10.00950.60850.34950.027*
C20.00917 (15)0.70925 (15)0.43370 (10)0.0244 (4)
H20.06520.75730.41400.029*
C30.03060 (16)0.72615 (14)0.50171 (10)0.0247 (4)
C40.11393 (16)0.65588 (15)0.53172 (9)0.0263 (4)
H40.14050.66840.57740.032*
C50.15754 (16)0.56606 (15)0.49268 (9)0.0239 (4)
H50.21350.51830.51270.029*
C60.11905 (14)0.54630 (13)0.42412 (9)0.0191 (3)
C70.15969 (15)0.44518 (14)0.38191 (9)0.0211 (4)
H70.09510.39000.38360.025*
C80.27095 (17)0.38623 (17)0.40901 (10)0.0317 (4)
H8A0.29390.32840.37650.047*
H8B0.25480.35330.45420.047*
H8C0.33420.43990.41350.047*
C90.27378 (15)0.55691 (15)0.29311 (9)0.0229 (4)
H9A0.34580.51440.28430.027*
H9B0.28680.60250.33480.027*
C100.25045 (16)0.63354 (15)0.23103 (9)0.0258 (4)
H10A0.31440.68780.22700.031*
H10B0.17710.67450.23870.031*
C110.24125 (17)0.56687 (17)0.16328 (10)0.0305 (4)
H11A0.31550.52780.15470.037*
H11B0.22730.61780.12420.037*
C120.10630 (14)0.43289 (14)0.25731 (9)0.0194 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0465 (3)0.0281 (3)0.0379 (3)0.0064 (2)0.0101 (2)0.0076 (2)
S10.0275 (3)0.0321 (3)0.0220 (2)0.00856 (19)0.00050 (18)0.00137 (18)
S20.0221 (2)0.0233 (2)0.0301 (2)0.00669 (17)0.00089 (18)0.00064 (17)
N10.0159 (7)0.0190 (7)0.0222 (7)0.0002 (5)0.0002 (6)0.0020 (6)
C10.0184 (8)0.0250 (8)0.0236 (9)0.0008 (7)0.0032 (7)0.0004 (7)
C20.0185 (8)0.0219 (8)0.0327 (10)0.0015 (7)0.0007 (7)0.0034 (7)
C30.0264 (9)0.0197 (8)0.0282 (9)0.0021 (7)0.0084 (7)0.0006 (7)
C40.0304 (10)0.0293 (9)0.0192 (8)0.0021 (8)0.0022 (7)0.0013 (7)
C50.0253 (9)0.0246 (8)0.0220 (8)0.0020 (7)0.0003 (7)0.0042 (7)
C60.0161 (8)0.0198 (8)0.0215 (8)0.0023 (6)0.0012 (7)0.0028 (7)
C70.0213 (9)0.0204 (8)0.0215 (8)0.0001 (7)0.0020 (7)0.0007 (7)
C80.0342 (11)0.0283 (9)0.0325 (10)0.0106 (8)0.0070 (8)0.0031 (8)
C90.0159 (8)0.0247 (8)0.0280 (9)0.0043 (7)0.0015 (7)0.0042 (7)
C100.0214 (9)0.0206 (8)0.0353 (10)0.0045 (7)0.0038 (8)0.0005 (8)
C110.0269 (10)0.0359 (10)0.0287 (9)0.0090 (8)0.0034 (8)0.0026 (8)
C120.0172 (8)0.0158 (7)0.0253 (8)0.0024 (6)0.0003 (7)0.0020 (7)
Geometric parameters (Å, º) top
Cl1—C31.7425 (18)C5—H50.9300
S1—C121.7422 (18)C6—C71.515 (2)
S1—C111.8092 (19)C7—C81.525 (2)
S2—C121.6875 (17)C7—H70.9800
N1—C121.330 (2)C8—H8A0.9600
N1—C91.481 (2)C8—H8B0.9600
N1—C71.485 (2)C8—H8C0.9600
C1—C21.383 (2)C9—C101.512 (3)
C1—C61.394 (2)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.381 (3)C10—C111.514 (3)
C2—H20.9300C10—H10A0.9700
C3—C41.379 (3)C10—H10B0.9700
C4—C51.389 (2)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.391 (2)
C12—S1—C11105.85 (8)C7—C8—H8A109.5
C12—N1—C9124.50 (14)C7—C8—H8B109.5
C12—N1—C7120.47 (14)H8A—C8—H8B109.5
C9—N1—C7114.98 (13)C7—C8—H8C109.5
C2—C1—C6121.49 (16)H8A—C8—H8C109.5
C2—C1—H1119.3H8B—C8—H8C109.5
C6—C1—H1119.3N1—C9—C10113.05 (14)
C3—C2—C1119.00 (16)N1—C9—H9A109.0
C3—C2—H2120.5C10—C9—H9A109.0
C1—C2—H2120.5N1—C9—H9B109.0
C4—C3—C2121.23 (16)C10—C9—H9B109.0
C4—C3—Cl1119.37 (15)H9A—C9—H9B107.8
C2—C3—Cl1119.36 (14)C9—C10—C11110.98 (15)
C3—C4—C5119.06 (17)C9—C10—H10A109.4
C3—C4—H4120.5C11—C10—H10A109.4
C5—C4—H4120.5C9—C10—H10B109.4
C4—C5—C6121.22 (16)C11—C10—H10B109.4
C4—C5—H5119.4H10A—C10—H10B108.0
C6—C5—H5119.4C10—C11—S1110.72 (12)
C5—C6—C1117.99 (16)C10—C11—H11A109.5
C5—C6—C7122.29 (15)S1—C11—H11A109.5
C1—C6—C7119.64 (15)C10—C11—H11B109.5
N1—C7—C6109.69 (13)S1—C11—H11B109.5
N1—C7—C8110.24 (14)H11A—C11—H11B108.1
C6—C7—C8115.75 (14)N1—C12—S2125.51 (13)
N1—C7—H7106.9N1—C12—S1122.66 (13)
C6—C7—H7106.9S2—C12—S1111.83 (9)
C8—C7—H7106.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S2i0.972.853.773 (2)158
C10—H10B···S2ii0.972.773.701 (2)160
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClNS2
Mr271.81
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)11.260 (2), 11.888 (2), 18.978 (4)
V3)2540.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.900, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
16988, 2932, 2605
Rint0.050
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.11
No. of reflections2925
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S2i0.972.853.773 (2)158
C10—H10B···S2ii0.972.773.701 (2)160
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2.
 

References

First citationAmir, N., Motonishi, M., Fujita, M., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2006). Eur. J. Inorg. Chem. pp. 1041–1049.  Web of Science CSD CrossRef Google Scholar
First citationCunico, W., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o411–o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds