organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[5-chloro-2-(prop-2-yn-1-yloxy)phenyl]methane

Qamar Ali,^a Itrat Anis,^a M. Raza Shah^a and Seik Weng Ng^b*

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 7527, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 January 2011; accepted 25 January 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.099; data-to-parameter ratio = 16.3.

The molecule of the title compound, $C_{19}H_{14}Cl_2O_2$, has two benzene rings connected to a methylene C atom, and the rings are aligned at 66.3 (1)°. Intermolecular C-H··· π and π - π stacking interactions are observed in the crystal structure, the centroid–centroid distances between parallel benzene rings being 3.7529 (12) and 3.6201 (12) Å, respectively.

Related literature

For a related structure, see: Hussain et al. (2009).

Experimental

Crystal data C10H14Cl2O2

$M_r = 345.20$	
Triclinic, P1	
a = 8.4844(5)	Å

b = 9.7845 (6) Å
c = 11.2568 (6) Å
$\alpha = 86.258 \ (5)^{\circ}$
$\beta = 71.412 \ (5)^{\circ}$

 $\gamma = 64.707 \ (6)^{\circ}$ $V = 798.08 \ (8) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{\rm min} = 0.815, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F²) = 0.099 S = 1.00 3523 reflections 216 parameters 2 restraints $\mu = 0.41 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.25 \times 0.20 \text{ mm}$

6118 measured reflections 3523 independent reflections 2975 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.30 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.35 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

```
Hydrogen-bond geometry (Å, °).
```

Cg is the centroid of the C11-C16 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdots Cg^i$	0.95	2.60	3.471 (2)	153
Symmetry code: (i)	-x + 1, -v + 1	-7 + 1		

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5147).

References

Agilent (2010). *CrysAlis PRO*. Agilent Technologies, Yarnton, England. Barbour, L. J. (2001). *J. Supramol. Chem.* **1**, 189–191. Hussain, Z., Shah, M. R., Anis, I. & Ng, S. W. (2009). *Acta Cryst.* E65, 0907. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2011). E67, o530 [doi:10.1107/S1600536811003205]

Bis[5-chloro-2-(prop-2-yn-1-yloxy)phenyl]methane

Qamar Ali, Itrat Anis, M. Raza Shah and Seik Weng Ng

S1. Comment

We have reported several compounds that adopt a V-shape; this shape is induced by a methylene linkage to two aromatic systems. An example is bis[2-(3-bromopropoxy)-5-methylphenyl]methane, which methyl carbon has a widened angle of 115.0 (2)° (Hussain *et al.*, 2009). The methylene angle in the present compound (Scheme I, Fig. 1) is similar [114.4 (1) °]. Two two aromatic rings that are connected the methylene carbon are aligned at 66.3 (1)°. Intermolecular C—H··· π interaction occurs between inversion center related molecules (Table 1). π - π stacking is also present between parallel benzene rings in the crystal structure, centroid-to-centroid distances being 3.7529 (12) Å between C1-ring and C1ⁱ-ring (symmetry code: (i) 1-x, 1-y, 1-z), and 3.6201 (12) Å between C11-ring and C11ⁱⁱ-ring (symmetry code: (ii) 2-x, 1-y, -z).

S2. Experimental

2, 2'-Methylenebis(4-chlorophenol) (1 g, 3.7 mmol) was dissolved in ethanol (30 ml). Potassium carbonate (1.5 g, 11 mmol) was added and the mixture was heated for an hour. Propargyl bromide (2 ml, 22 mmol) was added and the heating continues for another 3 h. Water (50 ml) was added. The organic compound was extracted by ethyl acetate (50 ml). Slow evaporation of ethyl acetate solution afforded crystals in 80% yield.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, $U_{iso}(H)$ 1.2 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The acetylenic H-atoms were located in a difference Fourier map, and were refined with a distance of C–H 0.95±0.01 Å; their temperature factors were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of C₁₉H₁₄Cl₂O₂ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Bis[5-chloro-2-(prop-2-yn-1-yloxy)phenyl]methane

Crystal data	
$C_{19}H_{14}Cl_2O_2$ $M_r = 345.20$ Triclinic, P1 Hall symbol: -P 1 a = 8.4844 (5) Å b = 9.7845 (6) Å c = 11.2568 (6) Å a = 86.258 (5)° $\beta = 71.412$ (5)° $\gamma = 64.707$ (6)° V = 798.08 (8) Å ³	Z = 2 F(000) = 356 $D_x = 1.436 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3298 reflections $\theta = 2.3-29.2^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 100 K Prism, colorless $0.30 \times 0.25 \times 0.20 \text{ mm}$
Data collection Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.815, T_{\max} = 1.000$ 6118 measured reflections 3523 independent reflections 2975 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.3^{\circ}$ $h = -9 \rightarrow 10$ $k = -10 \rightarrow 12$ $l = -11 \rightarrow 14$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2 + 0.2682P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.85099 (6)	0.23350 (5)	0.67998 (4)	0.02285 (13)	
C12	0.50877 (6)	0.78470 (5)	-0.01311 (4)	0.02450 (13)	
01	0.55177 (16)	0.77464 (14)	0.41682 (11)	0.0196 (3)	
O2	1.00711 (16)	0.26968 (13)	0.18471 (11)	0.0182 (3)	
C1	0.3290 (3)	1.1163 (2)	0.32429 (18)	0.0228 (4)	
C2	0.3478 (2)	1.0165 (2)	0.39167 (16)	0.0182 (4)	
C3	0.3745 (2)	0.89566 (19)	0.47714 (16)	0.0175 (4)	
H3A	0.3701	0.9327	0.5584	0.021*	
H3B	0.2769	0.8603	0.4932	0.021*	
C4	0.6114 (2)	0.65014 (19)	0.48288 (15)	0.0158 (4)	
C5	0.5100 (2)	0.6355 (2)	0.60376 (16)	0.0176 (4)	
Н5	0.3909	0.7132	0.6444	0.021*	
C6	0.5838 (2)	0.5070 (2)	0.66444 (16)	0.0176 (4)	
H6	0.5161	0.4960	0.7469	0.021*	
C7	0.7568 (2)	0.3954 (2)	0.60351 (16)	0.0176 (4)	
C8	0.8582 (2)	0.4087 (2)	0.48282 (16)	0.0172 (4)	
H8	0.9766	0.3300	0.4425	0.021*	
C9	0.7868 (2)	0.5366 (2)	0.42099 (15)	0.0154 (3)	
C10	0.8966 (2)	0.5563 (2)	0.29023 (15)	0.0161 (4)	
H10A	0.8890	0.6602	0.2891	0.019*	
H10B	1.0276	0.4843	0.2730	0.019*	
C11	0.8327 (2)	0.5312 (2)	0.18567 (15)	0.0151 (3)	
C12	0.7154 (2)	0.6527 (2)	0.13844 (16)	0.0170 (4)	
H12	0.6728	0.7530	0.1729	0.020*	
C13	0.6599 (2)	0.6288 (2)	0.04161 (16)	0.0172 (4)	
C14	0.7199 (2)	0.4852 (2)	-0.01130 (16)	0.0178 (4)	
H14	0.6819	0.4705	-0.0783	0.021*	
C15	0.8372 (2)	0.3614 (2)	0.03478 (16)	0.0167 (4)	
H15	0.8794	0.2615	-0.0005	0.020*	
C16	0.8922 (2)	0.38484 (19)	0.13286 (15)	0.0155 (3)	
C17	1.0784 (2)	0.1178 (2)	0.13135 (17)	0.0199 (4)	
H17A	1.1792	0.0504	0.1634	0.024*	
H17B	1.1309	0.1149	0.0389	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

0.9368 (2)	0.0606 (2)	0.16123 (16)	0.0196 (4)
0.8221 (3)	0.0152 (2)	0.18736 (17)	0.0232 (4)
0.317 (3)	1.1950 (19)	0.2701 (17)	0.033 (6)*
0.729 (2)	-0.020 (3)	0.209 (2)	0.039 (6)*
	0.9368 (2) 0.8221 (3) 0.317 (3) 0.729 (2)	0.9368 (2)0.0606 (2)0.8221 (3)0.0152 (2)0.317 (3)1.1950 (19)0.729 (2)-0.020 (3)	0.9368 (2)0.0606 (2)0.16123 (16)0.8221 (3)0.0152 (2)0.18736 (17)0.317 (3)1.1950 (19)0.2701 (17)0.729 (2)-0.020 (3)0.209 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0291 (3)	0.0206 (2)	0.0249 (2)	-0.0126 (2)	-0.01521 (19)	0.00937 (18)
C12	0.0240 (2)	0.0226 (3)	0.0224 (2)	-0.0051 (2)	-0.00986 (18)	0.00816 (18)
01	0.0207 (6)	0.0165 (6)	0.0147 (6)	-0.0038 (5)	-0.0032 (5)	0.0024 (5)
O2	0.0191 (6)	0.0138 (6)	0.0207 (6)	-0.0033 (5)	-0.0100 (5)	-0.0003 (5)
C1	0.0210 (9)	0.0223 (10)	0.0237 (10)	-0.0072 (8)	-0.0089 (7)	0.0042 (8)
C2	0.0143 (8)	0.0201 (9)	0.0187 (9)	-0.0053 (7)	-0.0055 (7)	-0.0031 (7)
C3	0.0150 (8)	0.0176 (9)	0.0174 (9)	-0.0046 (7)	-0.0049 (7)	-0.0006 (7)
C4	0.0191 (9)	0.0154 (8)	0.0145 (8)	-0.0074 (7)	-0.0074 (7)	0.0012 (7)
C5	0.0173 (8)	0.0191 (9)	0.0161 (9)	-0.0080 (7)	-0.0046 (7)	-0.0002 (7)
C6	0.0200 (9)	0.0209 (9)	0.0151 (8)	-0.0120 (8)	-0.0056 (7)	0.0026 (7)
C7	0.0229 (9)	0.0185 (9)	0.0182 (9)	-0.0120 (8)	-0.0115 (7)	0.0052 (7)
C8	0.0166 (8)	0.0175 (9)	0.0194 (9)	-0.0075 (7)	-0.0077 (7)	0.0002 (7)
C9	0.0171 (8)	0.0182 (9)	0.0146 (8)	-0.0103 (7)	-0.0057 (6)	0.0004 (7)
C10	0.0156 (8)	0.0169 (9)	0.0161 (8)	-0.0074 (7)	-0.0049 (6)	0.0011 (7)
C11	0.0137 (8)	0.0191 (9)	0.0138 (8)	-0.0097 (7)	-0.0023 (6)	0.0019 (7)
C12	0.0177 (8)	0.0164 (9)	0.0153 (8)	-0.0091 (7)	-0.0011 (6)	0.0021 (7)
C13	0.0143 (8)	0.0197 (9)	0.0140 (8)	-0.0059 (7)	-0.0029 (6)	0.0061 (7)
C14	0.0155 (8)	0.0246 (10)	0.0141 (8)	-0.0093 (8)	-0.0050 (6)	0.0022 (7)
C15	0.0172 (8)	0.0177 (9)	0.0138 (8)	-0.0072 (7)	-0.0037 (6)	-0.0003 (7)
C16	0.0132 (8)	0.0180 (9)	0.0141 (8)	-0.0065 (7)	-0.0035 (6)	0.0035 (7)
C17	0.0188 (9)	0.0151 (9)	0.0213 (9)	-0.0023 (7)	-0.0068 (7)	-0.0026 (7)
C18	0.0232 (9)	0.0155 (9)	0.0151 (9)	-0.0029 (8)	-0.0070 (7)	-0.0012 (7)
C19	0.0279 (10)	0.0231 (10)	0.0172 (9)	-0.0107 (9)	-0.0056 (7)	-0.0002 (7)

Geometric parameters (Å, °)

Cl1—C7	1.7518 (18)	C8—H8	0.9500	
Cl2—C13	1.7492 (18)	C9—C10	1.521 (2)	
O1—C4	1.374 (2)	C10-C11	1.516 (2)	
O1—C3	1.435 (2)	C10—H10A	0.9900	
O2—C16	1.378 (2)	C10—H10B	0.9900	
O2—C17	1.432 (2)	C11—C12	1.389 (2)	
C1—C2	1.183 (3)	C11—C16	1.400 (2)	
С1—Н1	0.94 (2)	C12—C13	1.385 (2)	
С2—С3	1.462 (2)	C12—H12	0.9500	
С3—НЗА	0.9900	C13—C14	1.376 (3)	
С3—Н3В	0.9900	C14—C15	1.394 (2)	
С4—С9	1.401 (2)	C14—H14	0.9500	
C4—C5	1.395 (2)	C15—C16	1.394 (2)	
C5—C6	1.389 (2)	C15—H15	0.9500	

С5—Н5	0.9500	C17—C18	1.470 (3)
C6—C7	1.379 (3)	C17—H17A	0.9900
С6—Н6	0.9500	C17—H17B	0.9900
C7—C8	1.389 (2)	C18—C19	1.184 (3)
C8—C9	1.387 (2)	С19—Н19	0.95 (2)
C4—O1—C3	117.28 (13)	C9—C10—H10A	108.7
C16—O2—C17	117.67 (13)	C11—C10—H10B	108.7
C2—C1—H1	178.8 (13)	C9—C10—H10B	108.7
C1—C2—C3	177.80 (19)	H10A—C10—H10B	107.6
O1—C3—C2	106.72 (13)	C12—C11—C16	118.08 (15)
O1—C3—H3A	110.4	C12—C11—C10	121.02 (15)
С2—С3—НЗА	110.4	C16—C11—C10	120.89 (15)
O1—C3—H3B	110.4	C13—C12—C11	120.63 (16)
С2—С3—Н3В	110.4	C13—C12—H12	119.7
НЗА—СЗ—НЗВ	108.6	C11—C12—H12	119.7
O1—C4—C9	115.07 (14)	C14—C13—C12	121.33 (16)
O1—C4—C5	123.85 (15)	C14—C13—Cl2	119.55 (14)
C9—C4—C5	121.06 (16)	C12—C13—Cl2	119.12 (14)
C6—C5—C4	119.73 (16)	C13—C14—C15	119.11 (16)
С6—С5—Н5	120.1	C13—C14—H14	120.4
C4—C5—H5	120.1	C15—C14—H14	120.4
C7—C6—C5	119.16 (16)	C14—C15—C16	119.73 (16)
С7—С6—Н6	120.4	C14—C15—H15	120.1
С5—С6—Н6	120.4	C16—C15—H15	120.1
C6—C7—C8	121.46 (16)	O2—C16—C15	123.84 (16)
C6-C7-C11	119.33 (13)	O2-C16-C11	115.05 (15)
C8—C7—C11	119.21 (14)	C15—C16—C11	121.11 (16)
C9—C8—C7	120.16 (16)	02-017-018	112.48 (14)
C9—C8—H8	119.9	02—C17—H17A	109.1
С7—С8—Н8	119.9	С18—С17—Н17А	109.1
C8—C9—C4	118.44 (15)	02—C17—H17B	109.1
C8—C9—C10	121.38 (15)	C18—C17—H17B	109.1
C4-C9-C10	120.17 (15)	H17A—C17—H17B	107.8
$C_{11} - C_{10} - C_{9}$	114 36 (13)	C19 - C18 - C17	178 90 (19)
C11-C10-H10A	108.7	C18—C19—H19	179.4 (15)
	10017		(10)
C4—O1—C3—C2	176.88 (13)	C9—C10—C11—C12	97.47 (18)
C3—O1—C4—C9	-178.72 (14)	C9—C10—C11—C16	-83.30 (19)
C3-01-C4-C5	0.0 (2)	C16—C11—C12—C13	-0.2 (2)
O1—C4—C5—C6	-178.32 (15)	C10-C11-C12-C13	179.03 (15)
C9—C4—C5—C6	0.3 (3)	C11—C12—C13—C14	-0.5 (2)
C4—C5—C6—C7	-0.2 (3)	C11—C12—C13—Cl2	178.86 (12)
C5—C6—C7—C8	-0.2 (3)	C12—C13—C14—C15	0.8 (2)
C5—C6—C7—C11	179.66 (13)	Cl2—C13—C14—C15	-178.63 (13)
C6—C7—C8—C9	0.5 (3)	C13—C14—C15—C16	-0.2 (2)
Cl1—C7—C8—C9	-179.40 (12)	C17—O2—C16—C15	2.2 (2)
C7—C8—C9—C4	-0.3 (2)	C17—O2—C16—C11	-177.57 (14)
	× /		× /

C7—C8—C9—C10	178.34 (15)	C14—C15—C16—O2	179.79 (15)
O1—C4—C9—C8	178.68 (14)	C14—C15—C16—C11	-0.5 (2)
C5—C4—C9—C8	-0.1 (2)	C12—C11—C16—O2	-179.54 (14)
O1-C4-C9-C10	0.0 (2)	C10-C11-C16-O2	1.2 (2)
C5—C4—C9—C10	-178.76 (15)	C12—C11—C16—C15	0.7 (2)
C8—C9—C10—C11	105.02 (18)	C10-C11-C16-C15	-178.53 (15)
C4—C9—C10—C11	-76.4 (2)	C16—O2—C17—C18	-71.59 (19)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 benzene ring.

D—H···A	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6…Cg ⁱ	0.95	2.60	3.471 (2)	153

Symmetry code: (i) -x+1, -y+1, -z+1.