

 $V = 5228.00 (18) \text{ Å}^3$

 $0.40 \times 0.30 \times 0.12 \ \mathrm{mm}$

21404 measured reflections

5914 independent reflections

4290 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Z = 8

T = 150 K

 $R_{int} = 0.087$

361 parameters

 $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4-Cyanophenolato)(subphthalocvaninato)boron¹

Andrew S. Paton,^a Alan J. Lough^b and Timothy P. Bender^a*

^aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and ^bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: tim.bender@utoronto.ca

Received 29 October 2010; accepted 6 January 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.141; data-to-parameter ratio = 16.4.

The crystal structure of the title compound, $C_{31}H_{16}BN_7O$, (CNPhO-BsubPc) is characterized by pairs of π - π stacking interactions between the concave faces of inversion-related BsubPc fragments with a centroid-centroid distance of 3.600 (1) Å. In addition, these pairs of molecules are linked into chains along [101] through further weak π - π stacking interactions with a centroid–centroid distance of 3.8587 (9) Å. There are also weak $C-H \cdot \cdot \pi$ (arene) interactions within the chains.

Related literature

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For the synthesis of boronsubphthalocyanine and its derivatives, see: Zyskowski & Kennedy (2000); Claessens et al. (2003); Paton et al. (2011b). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010) and references cited therein; Gommans et al. (2009). For related crystal structures of nonhalogenated boronsubphthalocyanine derivatives, see: Potz et al. (2000); Paton et al. (2010, 2011a,b). For the treatment of disordered solvent molecules, see: Athimoolam et al. (2005); Cox et al. (2003); Mohamed et al. (2003); Stähler et al. (2001).

Experimental

Crystal data

C ₃₁ H ₁₆ BN ₇ O	
$M_r = 513.32$	
Monoclinic, $C2/c$	
a = 16.2310 (3) Å	
b = 27.5129 (7) Å	
c = 13.4385 (2) Å	
$\beta = 119.4050 \ (12)^{\circ}$	

Data collection

с β

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.711, T_{\max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.141$ S = 1.065914 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C25-C30, N1/C1/C2/C7/C8 and N3/ C9/C10/C15/C19 rings, respectively.

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C3-H3A\cdots Cg1^{i}$ $C20-H20A\cdots Cg2^{ii}$ $C21-H21A\cdots Cg3^{ii}$	0.95 0.95 0.95	2.70 2.59 2.70	3.499 (3) 3.254 (4) 3.238 (4)	143 127 116

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

We wish to acknowledge funding for this research from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2323).

¹ Electron-withdrawing groups in the *para* position of the phenoxy molecular fragment. Part 3. For Part 1, see: Paton et al. (2010b); for Part 2, see: Paton et al. (2011).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835–853.
- Claessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). *Eur. J. Org. Chem.* pp. 2547–2551.
- Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, 0975–0977.
- Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435–3439.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). *Acta Cryst.* C59, m84–m86.
- Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). *Appl. Mater. Inter.* 2, 1934–1944.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Paton, A. S., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3246.
- Paton, A. S., Lough, A. J. & Bender, T. P. (2011a). Acta Cryst. E67, 057
- Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011b). CrystEngComm, 13, 914–919.
- Potz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588–596.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.
- Zyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707–712.

supporting information

Acta Cryst. (2011). E67, o505-o506 [doi:10.1107/S1600536811000869]

(4-Cyanophenolato)(subphthalocyaninato)boron

Andrew S. Paton, Alan J. Lough and Timothy P. Bender

S1. Comment

We report the crystal structure of 4-cyanophenoxy-boronsubphthalocyanine (CNPhO-**BsubPc**), which possesses an electron withdrawing group in the *para* position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of *para*-substituted phenoxy-**BsubPc** wherein most of the substituents were electron-donating alkyl groups (Paton *et al.*, 2011*b*). Contained within that study was 4-fluorophenoxy-**BsubPc** (FPhO-**BsubPc**). While fluorine is moderately electron withdrawing we did not observe any difference in its crystal structure compared to the baseline phenoxy-**BsubPc** structure which contains pairs of molecules associated through π -stacking *via* the concave faces of two **BsubPc** molecules related by inversion centers. We have also have reported two **BsubPc** derivatives with electron-withdrawing groups in the *para* position, 4-acetylphenoxy-**BsubPc** (Paton *et al.*, 2010) and 4-nitrophenoxy-**BsubPc** (Paton *et al.*, 2011*a*). Both of these compounds are similar in structure to the FPhO-**BsubPc**, which typifies the substituted phenoxy-**BsubPc** packing motif.

The molecular structure of the title compound is shown in Fig. 1. The molecule shows the expected bowl shape of the **BsubPc** ligand. The B—O—C angle is 128.89 (11)°; however, both experimental and computational gas-phase values of B—O—C angles for phenoxy-derivatized **BsubPc** compounds have been shown to be significantly smaller, at 115.2 (2)° for the typical FPhO-**BsubPc**, and around 115° for the computationally determined gas-phase value (Paton *et al.*, 2011*b*). The torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) is -1.9 (3)° while in FPhO-**BsubPc** it is -91.0 (2)°.

In the crystal structure, there are $\pi \cdots \pi$ interactions between the concave faces of pairs of molecules at a distance of 3.6002 (10) Å across an inversion centre (for rings N5/C17/C18/C23/C24 and C18—C23 related by 1/2-*x*, 1/2-*y*, 1-*z*). These types of $\pi \cdots \pi$ stacking interactions are common to other **BsubPc** derivatives mentioned above. In the crystal structure the title compound, additional weaker $\pi \cdots \pi$ -stacking interactions between inversion related pairs at a distance of 3.8587 (9) Å involving rings C18—C23 and C18—C23 related by 1-*x*, *y*, 3/2-*z*, form one-dimensional chains along [101].

Solvent voids are present in the structure (see experimental). The channel-like voids in which the solvent resides extend along the c axis (see Fig. 3) and are bordered by the convex-faces of the **BsubPc** fragment and the cyanophenoxy units. Diffusing heptane into a solution of the title compound in acetone, instead of heptane into a benzene solution as in the current experiment, gave the same crystal structure in terms of unit-cell parameters, cell volume, and solvent cavity volume.

S2. Experimental

Cl-**BsubPc** was synthesized by a procedure adapted from Zyskowski and Kennedy (2000). The title compound was synthesized using a method adapted from Claessens *et al.* (2003) and Paton *et al.* (2011*b*): 4-Cyanophenoxy-boronsubphthalocyanine. Cl-**BsubPc** (0.510 g, 0.0012 mol) was mixed with 4-cyanophenol (0.714 g, 0.0060 mol) in toluene (10 ml) in a cylindrical vessel fitted with a reflux condenser and argon inlet. The mixture was stirred and heated

at reflux under a constant pressure of argon for 17 h. Reaction was determined complete *via* HPLC by the absence of Cl-**BsubPc**. The solvent was evaporated under rotary evaporation. The crude product was purified on a Kauffman column using standard basic alumina (300 mesh) as the adsorbent and dichloromethane as the eluent. The product eluted from the Kauffman column while the excess phenol remained adsorbed. The dichloromethane was then removed under reduced pressure yielding a dark pink/magenta powder of the title compound (0.236 g, 40%).

S3. Refinement

All H atoms were placed in calculated positions and included in the refinment with C—H = 0.95Å and $U_{iso}(H) = 1.2U_{eq}(C)$. During the refinement of the structure, electron density peaks (the largest being 2.38 e/Å³) were located that were believed to be highly disordered solvent molecules, possibly heptane and/or benzene. Attempts made to model the solvent molecule were not successful. The SQUEEZE option in *PLATON* (Spek, 2009) indicated there was a solvent cavity of volume 296 Å³ containing approximately 43 electrons per unit cell. We are not able to say with any certainty which of the two crystallization solvents used are present in the lattice. There was no observed streaking or satellite peaks on the exposed images to suggest that this might be a modulated structure. Therefore, in the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option *PLATON* (Spek, 2009). Similar treatments of disordered solvent molecules were carried out by Stähler *et al.* (2001), Cox *et al.* (2003), Mohamed *et al.* (2003) and Athimoolam *et al.* (2005).

Figure 1

The labelled molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.

Figure 2

Part of the crystal structure of the title compound showing the π - π -stacking and C—H··· π interactions as dotted lines.

Figure 3

Part of the crystal structure of the title comound with the channel-like solvent voids (see experimental) CNPhO-**BsubPc** shown in orange.

(4-cyanophenolato)(1,2,3,4,8,9,10,11,15,16,17,18-dodecafluoro-7,12:14,19- diimino-21,5-nitrilo-5H-tribenzo[c,h,m][1,6,11]triazacyclopentadecinato)boron

Crystal data	
$C_{31}H_{16}BN_7O$	F(000) = 2112
$M_r = 513.32$	$D_{\rm x} = 1.304 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 21404 reflections
a = 16.2310(3) Å	$\theta = 2.6 - 27.5^{\circ}$
b = 27.5129(7) Å	$\mu = 0.08 \ { m mm^{-1}}$
c = 13.4385 (2) Å	T = 150 K
$\beta = 119.4050 \ (12)^{\circ}$	Plate, purple
$V = 5228.00 (18) \text{ Å}^3$	$0.40 \times 0.30 \times 0.12 \text{ mm}$
Z = 8	
Data collection	
Nonius KappaCCD	21404 measured reflections
diffractometer	5914 independent reflections
Radiation source: fine-focus sealed tube	4290 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.087$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
φ scans and ω scans with κ offsets	$h = -21 \rightarrow 18$
Absorption correction: multi-scan	$k = -35 \rightarrow 35$
(SORTAV; Blessing, 1995)	$l = -17 \rightarrow 17$
$T_{\min} = 0.711, \ T_{\max} = 0.994$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.141$	neighbouring sites
S = 1.06	H-atom parameters constrained
5914 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0863P)^2]$
361 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.23 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
O1	0.45381 (6)	0.13599 (4)	0.37150 (8)	0.0282 (3)
N1	0.29842 (7)	0.16745 (5)	0.25275 (9)	0.0239 (3)
N2	0.20587 (8)	0.09502 (5)	0.20043 (10)	0.0279 (3)
N3	0.31564 (8)	0.11128 (5)	0.39600 (10)	0.0250 (3)
N4	0.34779 (8)	0.14317 (5)	0.57623 (10)	0.0269 (3)
N5	0.37213 (7)	0.19169 (5)	0.44565 (9)	0.0234 (3)
N6	0.32295 (8)	0.25170 (5)	0.30000 (10)	0.0256 (3)
N7	0.89695 (9)	0.09629 (6)	0.79845 (12)	0.0423 (4)
C1	0.28553 (9)	0.21531 (6)	0.22298 (12)	0.0244 (3)
C2	0.20815 (9)	0.21704 (6)	0.10579 (11)	0.0246 (3)
C3	0.16247 (10)	0.25605 (6)	0.03201 (12)	0.0276 (3)
H3A	0.1862	0.2883	0.0515	0.033*
C4	0.08163 (11)	0.24607 (6)	-0.07024 (12)	0.0319 (4)
H4A	0.0503	0.2718	-0.1225	0.038*
C5	0.04511 (10)	0.19906 (6)	-0.09831 (12)	0.0324 (4)
H5A	-0.0114	0.1937	-0.1685	0.039*
C6	0.08894 (10)	0.16012 (6)	-0.02685 (12)	0.0285 (3)
H6A	0.0637	0.1282	-0.0467	0.034*
C7	0.17179 (9)	0.16932 (6)	0.07568 (11)	0.0249 (3)
C8	0.22770 (9)	0.13839 (6)	0.17416 (11)	0.0245 (3)
С9	0.24642 (10)	0.08345 (6)	0.31192 (12)	0.0266 (3)
C10	0.21193 (10)	0.05125 (6)	0.36928 (12)	0.0295 (3)
C11	0.14170 (11)	0.01560 (6)	0.32724 (14)	0.0343 (4)
H11A	0.1111	0.0063	0.2491	0.041*
C12	0.11801 (12)	-0.00584 (6)	0.40292 (15)	0.0401 (4)

H12A	0.0717	-0.0308	0.3765	0.048*
C13	0.16061 (13)	0.00841 (7)	0.51697 (15)	0.0411 (4)
H13A	0.1427	-0.0070	0.5667	0.049*
C14	0.22856 (12)	0.04466 (6)	0.55934 (14)	0.0371 (4)
H14A	0.2566	0.0546	0.6369	0.044*
C15	0.25479 (10)	0.06624 (6)	0.48518 (12)	0.0294 (4)
C16	0.31566 (10)	0.10753 (6)	0.49800 (12)	0.0272 (3)
C17	0.36934 (9)	0.18587 (6)	0.54540 (11)	0.0250 (3)
C18	0.37682 (9)	0.23457 (6)	0.59076 (11)	0.0256 (3)
C19	0.38193 (9)	0.25146 (6)	0.69168 (12)	0.0290 (4)
H19A	0.3810	0.2296	0.7459	0.035*
C20	0.38842 (10)	0.30100 (6)	0.70979 (13)	0.0320 (4)
H20A	0.3938	0.3133	0.7788	0.038*
C21	0.38732 (10)	0.33359 (6)	0.62963 (13)	0.0333 (4)
H21A	0.3933	0.3674	0.6459	0.040*
C22	0.37760 (9)	0.31749 (6)	0.52658 (13)	0.0309 (4)
H22A	0.3741	0.3398	0.4707	0.037*
C23	0.37317 (9)	0.26767 (6)	0.50768 (11)	0.0257 (3)
C24	0.36076 (9)	0.23903 (6)	0.41071 (12)	0.0244 (3)
C25	0.54079 (9)	0.12725 (6)	0.46227 (12)	0.0252 (3)
C26	0.61048 (10)	0.11309 (6)	0.43571 (12)	0.0280 (3)
H26A	0.5952	0.1096	0.3582	0.034*
C27	0.70191 (10)	0.10419 (6)	0.52242 (12)	0.0286 (3)
H27A	0.7487	0.0937	0.5042	0.034*
C28	0.72545 (10)	0.11047 (6)	0.63614 (12)	0.0275 (3)
C29	0.65582 (11)	0.12432 (6)	0.66259 (13)	0.0316 (4)
H29A	0.6715	0.1285	0.7401	0.038*
C30	0.56400 (10)	0.13197 (6)	0.57646 (12)	0.0306 (4)
H30A	0.5165	0.1405	0.5951	0.037*
C31	0.82104 (11)	0.10284 (6)	0.72633 (13)	0.0308 (4)
B1	0.36726 (11)	0.15027 (7)	0.37081 (13)	0.0256 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0217 (5)	0.0396 (7)	0.0226 (5)	0.0049 (4)	0.0102 (4)	0.0000 (4)
N1	0.0231 (6)	0.0279 (8)	0.0215 (6)	0.0008 (5)	0.0115 (5)	-0.0012 (5)
N2	0.0302 (6)	0.0288 (8)	0.0261 (6)	0.0013 (5)	0.0150 (5)	-0.0032 (5)
N3	0.0261 (6)	0.0270 (7)	0.0226 (6)	0.0028 (5)	0.0124 (5)	-0.0001 (5)
N4	0.0241 (6)	0.0323 (8)	0.0236 (6)	0.0010 (5)	0.0111 (5)	-0.0002 (5)
N5	0.0199 (5)	0.0293 (8)	0.0206 (6)	0.0001 (5)	0.0096 (5)	-0.0011 (5)
N6	0.0215 (6)	0.0315 (8)	0.0245 (6)	-0.0016 (5)	0.0118 (5)	-0.0011 (5)
N7	0.0293 (7)	0.0455 (10)	0.0408 (8)	0.0011 (6)	0.0085 (7)	-0.0024 (7)
C1	0.0202 (7)	0.0311 (9)	0.0247 (7)	0.0004 (6)	0.0132 (6)	0.0009 (6)
C2	0.0210 (7)	0.0342 (9)	0.0207 (7)	0.0003 (6)	0.0118 (6)	-0.0003 (6)
C3	0.0263 (7)	0.0321 (9)	0.0267 (7)	0.0005 (6)	0.0148 (6)	0.0001 (6)
C4	0.0284 (8)	0.0426 (11)	0.0246 (7)	0.0067 (7)	0.0130 (6)	0.0051 (7)
C5	0.0241 (7)	0.0480 (11)	0.0218 (7)	0.0025 (7)	0.0086 (6)	-0.0022 (7)

supporting information

C6	0.0259 (7)	0.0362 (10)	0.0240 (7)	0.0006 (6)	0.0126 (6)	-0.0041 (6)
C7	0.0238 (7)	0.0320 (9)	0.0223 (7)	0.0020 (6)	0.0139 (6)	-0.0027 (6)
C8	0.0235 (7)	0.0296 (9)	0.0225 (7)	0.0006 (6)	0.0130 (6)	-0.0045 (6)
C9	0.0290 (7)	0.0254 (9)	0.0270 (7)	0.0025 (6)	0.0151 (6)	-0.0027 (6)
C10	0.0334 (8)	0.0272 (9)	0.0311 (8)	0.0034 (6)	0.0183 (7)	-0.0004 (6)
C11	0.0360 (8)	0.0312 (10)	0.0364 (9)	0.0013 (7)	0.0183 (7)	-0.0005 (7)
C12	0.0448 (10)	0.0310 (10)	0.0494 (10)	-0.0049 (7)	0.0270 (8)	0.0001 (8)
C13	0.0520 (10)	0.0345 (11)	0.0458 (10)	-0.0010 (8)	0.0310 (9)	0.0073 (8)
C14	0.0452 (9)	0.0367 (11)	0.0341 (8)	-0.0003 (8)	0.0231 (8)	0.0027 (7)
C15	0.0309 (8)	0.0292 (9)	0.0297 (8)	0.0038 (6)	0.0160 (7)	0.0020 (6)
C16	0.0264 (7)	0.0329 (9)	0.0229 (7)	0.0037 (6)	0.0127 (6)	0.0013 (6)
C17	0.0183 (6)	0.0356 (10)	0.0204 (7)	0.0022 (6)	0.0089 (6)	-0.0005 (6)
C18	0.0168 (6)	0.0345 (9)	0.0246 (7)	0.0004 (6)	0.0096 (6)	-0.0032 (6)
C19	0.0198 (7)	0.0419 (10)	0.0267 (8)	0.0002 (6)	0.0124 (6)	-0.0041 (7)
C20	0.0217 (7)	0.0444 (11)	0.0312 (8)	0.0017 (6)	0.0141 (6)	-0.0102 (7)
C21	0.0233 (7)	0.0345 (10)	0.0379 (9)	0.0020 (6)	0.0117 (7)	-0.0099 (7)
C22	0.0227 (7)	0.0337 (10)	0.0321 (8)	0.0013 (6)	0.0103 (6)	-0.0024 (7)
C23	0.0173 (6)	0.0329 (9)	0.0246 (7)	-0.0006 (6)	0.0084 (6)	-0.0041 (6)
C24	0.0173 (6)	0.0306 (9)	0.0248 (7)	-0.0006 (6)	0.0100 (6)	-0.0011 (6)
C25	0.0218 (7)	0.0288 (9)	0.0246 (7)	0.0022 (6)	0.0111 (6)	0.0031 (6)
C26	0.0278 (7)	0.0336 (10)	0.0255 (7)	0.0010 (6)	0.0152 (6)	0.0004 (6)
C27	0.0242 (7)	0.0338 (10)	0.0311 (8)	0.0006 (6)	0.0160 (6)	0.0013 (6)
C28	0.0237 (7)	0.0283 (9)	0.0277 (8)	0.0012 (6)	0.0104 (6)	0.0015 (6)
C29	0.0319 (8)	0.0380 (10)	0.0238 (8)	0.0063 (7)	0.0128 (7)	0.0005 (6)
C30	0.0269 (7)	0.0419 (10)	0.0253 (8)	0.0082 (7)	0.0146 (6)	0.0024 (7)
C31	0.0292 (8)	0.0309 (10)	0.0299 (8)	-0.0009 (6)	0.0127 (7)	-0.0023 (7)
B1	0.0237 (8)	0.0300 (10)	0.0233 (8)	0.0033 (7)	0.0117 (7)	-0.0013 (7)

Geometric parameters (Å, °)

O1—C25	1.3593 (16)	C11—C12	1.384 (2)
O1—B1	1.4544 (18)	C11—H11A	0.9500
N1—C1	1.362 (2)	C12—C13	1.393 (2)
N1—C8	1.3718 (18)	C12—H12A	0.9500
N1—B1	1.4995 (19)	C13—C14	1.385 (2)
N2—C8	1.340 (2)	C13—H13A	0.9500
N2—C9	1.3458 (18)	C14—C15	1.394 (2)
N3—C9	1.3706 (18)	C14—H14A	0.9500
N3—C16	1.3744 (18)	C15—C16	1.459 (2)
N3—B1	1.499 (2)	C17—C18	1.452 (2)
N4—C16	1.342 (2)	C18—C19	1.397 (2)
N4—C17	1.348 (2)	C18—C23	1.419 (2)
N5—C24	1.3658 (19)	C19—C20	1.379 (2)
N5—C17	1.3726 (18)	C19—H19A	0.9500
N5—B1	1.496 (2)	C20—C21	1.395 (2)
N6—C24	1.3473 (18)	C20—H20A	0.9500
N6-C1	1.3510 (19)	C21—C22	1.387 (2)
N7—C31	1.1476 (19)	C21—H21A	0.9500

C1—C2	1.4553 (18)	C22—C23	1.389 (2)
C2—C3	1.401 (2)	C22—H22A	0.9500
C2—C7	1.415 (2)	C23—C24	1.450 (2)
C3—C4	1.384 (2)	C25—C30	1.395 (2)
С3—НЗА	0.9500	C25—C26	1.398 (2)
C4—C5	1.395 (2)	C26—C27	1.386 (2)
C4—H4A	0.9500	C26—H26A	0.9500
C5—C6	1.380(2)	C27—C28	1.392 (2)
С5—Н5А	0.9500	C27—H27A	0.9500
C6-C7	1 3969 (19)	C_{28} C_{29}	1.394(2)
С6—Н6А	0.9500	C_{28} C_{31}	1.391(2) 1 440(2)
C7_C8	1.456(2)	$C_{20} = C_{30}$	1.440(2) 1.382(2)
$C_{1} = C_{0}$	1.450(2)	$C_{29} = C_{30}$	0.0500
C_{10} C_{11}	1.433(2)	C_{29} H_{20A}	0.9500
C10_C15	1.390(2)	C30—1130A	0.9300
010-013	1.420 (2)		
C25_01_B1	128 89 (11)	C14-C15-C10	120 23 (14)
C1_N1_C8	112 80 (11)	C14-C15-C16	120.25(14) 132.36(15)
C1 N1 P1	112.00 (11)	C14 - C15 - C16	107.11(13)
$C_1 = N_1 = D_1$	122.00(12) 122.55(12)	N4 C16 N2	107.11(13) 122.42(14)
$C_0 = N_1 = D_1$	122.33(13) 117.12(12)	$\frac{1}{10} \frac{1}{10} \frac$	122.43(14) 120.02(14)
$C_0 = N_2 = C_1$	117.12(12)	$N_{4} = C_{10} = C_{15}$	129.92(14)
C9 - N3 - C10	112.27(12)	$N_{3} = C_{10} = C_{13}$	105.78 (13)
C9—N3—B1	122.45 (12)	N4—C17—N5	122.68 (13)
C16—N3—B1	123.54 (12)	N4—C17—C18	130.99 (13)
C16—N4—C17	117.12 (13)	N5—C17—C18	105.44 (13)
C24—N5—C17	112.54 (12)	C19—C18—C23	120.65 (15)
C24—N5—B1	122.79 (12)	C19—C18—C17	131.87 (15)
C17—N5—B1	123.46 (13)	C23—C18—C17	107.41 (12)
C24—N6—C1	116.35 (13)	C20—C19—C18	117.58 (15)
N6-C1-N1	123.02 (12)	C20—C19—H19A	121.2
N6-C1-C2	129.00 (14)	C18—C19—H19A	121.2
N1-C1-C2	106.01 (12)	C19—C20—C21	121.86 (14)
C3—C2—C7	120.47 (13)	C19—C20—H20A	119.1
C3—C2—C1	131.80 (14)	C21—C20—H20A	119.1
C7—C2—C1	107.24 (13)	C22—C21—C20	121.19 (16)
C4—C3—C2	117.71 (15)	C22—C21—H21A	119.4
C4—C3—H3A	121.1	C20—C21—H21A	119.4
С2—С3—НЗА	121.1	C21—C22—C23	117.89 (15)
C3—C4—C5	121.48 (15)	C21—C22—H22A	121.1
C3—C4—H4A	119.3	C23—C22—H22A	121.1
C5-C4-H4A	119.3	$C^{22}-C^{23}-C^{18}$	120.72 (13)
C6-C5-C4	121 73 (14)	$C^{22} - C^{23} - C^{24}$	120.72(13) 132.25(14)
C6	119.1	C18 - C23 - C24	102.29(11) 106.98(14)
C4	110.1	N6-C24-N5	122 53 (13)
$C_{7} = C_{5} = 115$	117.60 (15)	N6-C24 - C23	122.33(13) 120 70 (14)
$C_{5} = C_{6} = C_{7}$	117.00 (13)	10 - 024 - 023	127.70(14) 105.99(12)
C_{3} C_{6} H_{6}	121.2	113 - C24 - C23	103.00(12) 124.94(12)
$C_1 = C_0 = \Pi_0 A$	121.2 120.07 (12)	01 - 025 - 030	124.04(13) 115.72(12)
U - U - U - U - U - U - U - U - U - U -	120.97 (13)	01 - 023 - 020	113./3(12)

C6—C7—C8	131.24 (15)	C30—C25—C26	119.42 (13)
C2—C7—C8	107.23 (12)	C27—C26—C25	120.06 (13)
N2—C8—N1	123.06 (13)	С27—С26—Н26А	120.0
N2—C8—C7	129.22 (13)	С25—С26—Н26А	120.0
N1—C8—C7	105.76 (13)	C26—C27—C28	120.29 (14)
N2—C9—N3	122.72 (14)	С26—С27—Н27А	119.9
N2-C9-C10	128.97 (13)	С28—С27—Н27А	119.9
N3—C9—C10	106.04 (12)	C27—C28—C29	119.60 (13)
C11—C10—C15	120.73 (14)	C27—C28—C31	120.48 (13)
C11—C10—C9	131.58 (14)	C29—C28—C31	119.91 (14)
C15—C10—C9	107.20 (13)	C30—C29—C28	120.25 (14)
C12—C11—C10	117.94 (15)	С30—С29—Н29А	119.9
C12—C11—H11A	121.0	С28—С29—Н29А	119.9
C10-C11-H11A	121.0	C29—C30—C25	120.32 (14)
C11—C12—C13	121.46 (16)	С29—С30—Н30А	119.8
C11—C12—H12A	119.3	С25—С30—Н30А	119.8
C13—C12—H12A	119.3	N7—C31—C28	179.29 (19)
C14—C13—C12	121.33 (16)	O1—B1—N5	117.99 (12)
C14—C13—H13A	119.3	O1—B1—N3	116.79 (13)
C12—C13—H13A	119.3	N5—B1—N3	104.14 (12)
C13—C14—C15	118.27 (15)	O1—B1—N1	107.91 (12)
C13—C14—H14A	120.9	N5—B1—N1	103.72 (12)
C15—C14—H14A	120.9	N3—B1—N1	104.83 (12)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively.

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3A···Cg1 ⁱ	0.95	2.70	3.499 (3)	143
C20—H20 <i>A</i> ··· <i>C</i> g2 ⁱⁱ	0.95	2.59	3.254 (4)	127
C21—H21A····Cg3 ⁱⁱ	0.95	2.70	3.238 (4)	116

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) -*x*+1/2, -*y*+1/2, -*z*+1.