organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-[(4-hy­dr­oxy-3,5-dimeth­­oxy­phen­yl)(2-hy­dr­oxy-4,4-di­methyl-6-oxo­cyclo­hex-1-en-1-yl)meth­yl]-5,5-di­methyl­cyclo­hex-2-en-1-one

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: yhzhou1966@yahoo.com.cn

(Received 11 November 2010; accepted 20 January 2011; online 26 January 2011)

In the title compound, C25H32O7, the 3-hy­droxy-5,5-dimethyl­cyclo­hex-2-enone rings adopt slightly distorted envelope conformations with the two planes at the base of the envelope forming dihedral angles of 57.6 (4) and 53.9 (9)° with the benzene ring. There is an intra­molecular hy­droxy–ketone O—H⋯O inter­action between the two substituted cyclo­hexane rings as well as a short intra­molecular phenol–meth­oxy O—H⋯O inter­action.

Related literature

For related structures, see: Yang et al. (2010[Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.]); Tu et al. (2004[Tu, S.-J., Zhang, X.-J. & Zhu, S.-L. (2004). Acta Cryst. E60, o1870-o1872.]). For applications of 1,4-dihydro­pyridine derivatives, see: Rose & Draeger (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. A35, 2238-2243.]); Davies et al. (2005[Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent No. 6911442.]); Warrior et al. (2005[Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent No. 2005060748.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32O7

  • Mr = 444.51

  • Triclinic, [P \overline 1]

  • a = 9.1620 (18) Å

  • b = 10.979 (2) Å

  • c = 13.120 (3) Å

  • α = 100.82 (3)°

  • β = 109.04 (3)°

  • γ = 104.16 (3)°

  • V = 1157.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.982

  • 4515 measured reflections

  • 4230 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.184

  • S = 1.00

  • 4230 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O6 0.82 1.80 2.604 (3) 166
O7—H7D⋯O4 0.82 1.84 2.647 (3) 168

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of new methods for the synthesis of 1,4-dihydropyridine derivatives is the motive for the current study, these derivatives being of interest because of their presence in numerous natural products and as well they possess a wide range physiological activities, e.g. they have calcium modulatory properties (Rose & Draeger, 1992), antibacterial activity (Davies et al., 2005) and fungicidal activity (Warrior et al., 2005). In order to prepare 1,4-dihydropyridine and research its bioactivity, the intermediate product C25H32O7, the title compound (I) was synthesized and its crystal structure is presented here. In the molecular structure of (I) (Fig. 1), the two fused 3-hydroxy-5,5-dimethylcyclohex-2-enone rings can be regarded as having envelope conformations, with atom C13 0.66 (6) Å out of the plane of atoms C10/C11/C12/C14/C15 and atom C21 0.65 (5) Å out of the plane of atoms C18/C19/C20/C22/C23. In addition, the two planes form dihedral angles of 57.6 (4)° and 53.9 (9)° with the phenyl ring. The methoxy group is nearly coplanar with the attached benzene ring [torsion angle C8—O2—C4—C5, -2.4 (5)°]. The crystal packing of the title compound is stabilized by two intra- cyclohexane ring hydroxy O—H···Oketone hydrogen bonds and a single intramolecular phenol O—H···O3methoxy interaction (Table 1).

Related literature top

For related structures, see: Yang et al. (2010); Tu et al. (2004). For applications of 1,4-dihydropyridine derivatives, see: Rose & Draeger (1992); Davies et al. (2005); Warrior et al. (2005).

Experimental top

A mixture of 4-hydroxy-3,5-dimethoxybenzaldehyde (2 mmol) and 4-hydroxy-3,5-dimethoxy (4 mmol) was stirred in water (2 ml) at 353 K. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

The H atoms were fixed geometrically and allowed to ride on the attached non-H atoms, with O—H = 0.82–0.85 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-Hydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)(2-hydroxy-4,4-dimethyl-6- oxocyclohex-1-en-1-yl)methyl]-5,5-dimethylcyclohex-2-en-1-one top
Crystal data top
C25H32O7Z = 2
Mr = 444.51F(000) = 476
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1620 (18) ÅCell parameters from 25 reflections
b = 10.979 (2) Åθ = 8–14°
c = 13.120 (3) ŵ = 0.09 mm1
α = 100.82 (3)°T = 293 K
β = 109.04 (3)°Block, colourless
γ = 104.16 (3)°0.30 × 0.20 × 0.20 mm
V = 1157.0 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2652 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1312
Tmin = 0.973, Tmax = 0.982l = 1514
4515 measured reflections3 standard reflections every 200 reflections
4230 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.18P]
where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H32O7γ = 104.16 (3)°
Mr = 444.51V = 1157.0 (6) Å3
Triclinic, P1Z = 2
a = 9.1620 (18) ÅMo Kα radiation
b = 10.979 (2) ŵ = 0.09 mm1
c = 13.120 (3) ÅT = 293 K
α = 100.82 (3)°0.30 × 0.20 × 0.20 mm
β = 109.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2652 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.973, Tmax = 0.9823 standard reflections every 200 reflections
4515 measured reflections intensity decay: 1%
4230 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
4230 reflectionsΔρmin = 0.30 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3616 (3)0.2008 (3)0.8305 (2)0.0423 (7)
H1A0.46680.23610.83390.051*
O10.1583 (3)0.0314 (2)0.98624 (19)0.0696 (7)
H1B0.24200.02961.03800.084*
C20.3382 (3)0.1413 (3)0.9100 (2)0.0454 (7)
O20.0996 (3)0.0423 (2)0.82596 (19)0.0702 (7)
O30.4598 (3)0.1312 (2)0.99870 (18)0.0603 (6)
C30.1799 (4)0.0880 (3)0.9058 (2)0.0486 (7)
O40.1863 (2)0.1972 (2)0.42127 (16)0.0618 (6)
C40.0503 (3)0.0955 (3)0.8216 (2)0.0490 (7)
O50.0426 (2)0.4150 (2)0.69521 (17)0.0542 (6)
H5B0.14000.43410.73420.081*
C50.0728 (3)0.1532 (3)0.7405 (2)0.0464 (7)
H5A0.01720.15500.68230.056*
O60.3409 (2)0.49561 (19)0.84537 (16)0.0516 (5)
C60.2298 (3)0.2087 (2)0.7456 (2)0.0383 (6)
O70.4945 (2)0.3343 (2)0.55456 (17)0.0652 (7)
H7D0.39580.29670.52040.098*
C70.6237 (4)0.1861 (4)1.0097 (3)0.0652 (9)
H7A0.69680.17211.07440.098*
H7B0.64860.27871.01890.098*
H7C0.63620.14470.94330.098*
C80.2392 (4)0.0506 (4)0.7457 (3)0.0733 (10)
H8A0.33400.00920.75860.110*
H8B0.25070.00700.67150.110*
H8C0.22840.14120.75210.110*
C90.2629 (3)0.2702 (2)0.6556 (2)0.0363 (6)
H9A0.29400.20560.61230.044*
C100.1132 (3)0.2811 (3)0.5686 (2)0.0378 (6)
C110.0111 (3)0.3455 (3)0.5945 (2)0.0401 (6)
C120.1474 (3)0.3377 (3)0.5066 (3)0.0500 (7)
H12A0.13170.41850.48550.060*
H12B0.22830.33200.53980.060*
C130.2147 (3)0.2233 (3)0.4010 (2)0.0475 (7)
C140.0754 (3)0.2221 (3)0.3619 (2)0.0578 (8)
H14A0.10970.14140.30200.069*
H14B0.05450.29470.33060.069*
C150.0812 (3)0.2323 (3)0.4535 (2)0.0461 (7)
C160.3548 (4)0.2419 (4)0.3101 (3)0.0692 (10)
H16A0.44230.24170.33520.104*
H16B0.39370.17150.24200.104*
H16C0.31660.32410.29610.104*
C170.2806 (4)0.0945 (3)0.4246 (3)0.0622 (9)
H17A0.19420.08120.48180.093*
H17B0.32220.02310.35680.093*
H17C0.36700.09810.45000.093*
C180.4135 (3)0.3933 (3)0.7051 (2)0.0374 (6)
C190.5225 (3)0.4114 (3)0.6525 (2)0.0460 (7)
C200.6797 (3)0.5237 (3)0.7034 (3)0.0550 (8)
H20A0.66170.59710.67600.066*
H20B0.75930.49810.67850.066*
C210.7493 (3)0.5682 (3)0.8309 (2)0.0505 (7)
C220.6138 (3)0.5941 (3)0.8669 (2)0.0510 (7)
H22A0.64630.60240.94670.061*
H22B0.60440.67750.85660.061*
C230.4487 (3)0.4906 (3)0.8044 (2)0.0402 (6)
C240.8977 (4)0.6928 (4)0.8753 (3)0.0769 (11)
H24A0.86580.76050.84630.115*
H24B0.98060.67480.85130.115*
H24C0.94000.72140.95620.115*
C250.8023 (4)0.4613 (4)0.8764 (3)0.0732 (10)
H25A0.70960.38280.84960.110*
H25B0.84660.49030.95730.110*
H25C0.88410.44360.85100.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (15)0.0453 (16)0.0461 (16)0.0129 (13)0.0173 (13)0.0140 (13)
O10.0773 (16)0.0842 (17)0.0682 (15)0.0278 (13)0.0394 (13)0.0476 (13)
C20.0482 (17)0.0440 (16)0.0440 (16)0.0187 (14)0.0141 (14)0.0154 (13)
O20.0490 (13)0.0912 (17)0.0726 (15)0.0050 (12)0.0324 (12)0.0372 (13)
O30.0537 (13)0.0724 (15)0.0626 (14)0.0253 (11)0.0205 (11)0.0351 (12)
C30.0553 (19)0.0460 (17)0.0496 (17)0.0118 (14)0.0282 (15)0.0180 (14)
O40.0482 (12)0.0898 (16)0.0484 (12)0.0274 (12)0.0249 (10)0.0055 (11)
C40.0447 (17)0.0519 (17)0.0526 (17)0.0092 (14)0.0266 (15)0.0154 (14)
O50.0387 (11)0.0639 (13)0.0556 (13)0.0193 (10)0.0203 (10)0.0010 (10)
C50.0372 (15)0.0557 (17)0.0460 (16)0.0108 (13)0.0181 (13)0.0168 (14)
O60.0428 (11)0.0597 (13)0.0539 (12)0.0165 (10)0.0272 (10)0.0060 (10)
C60.0364 (15)0.0387 (14)0.0409 (15)0.0111 (12)0.0186 (12)0.0097 (12)
O70.0413 (12)0.0888 (17)0.0559 (13)0.0097 (11)0.0277 (10)0.0002 (12)
C70.054 (2)0.087 (2)0.064 (2)0.0362 (19)0.0194 (17)0.0315 (19)
C80.0450 (19)0.091 (3)0.083 (3)0.0118 (18)0.0328 (19)0.024 (2)
C90.0324 (14)0.0422 (15)0.0387 (14)0.0162 (12)0.0174 (12)0.0099 (12)
C100.0305 (14)0.0439 (15)0.0431 (15)0.0120 (12)0.0186 (12)0.0148 (12)
C110.0322 (14)0.0437 (15)0.0466 (16)0.0117 (12)0.0189 (12)0.0127 (13)
C120.0357 (15)0.0515 (17)0.0642 (19)0.0172 (14)0.0188 (14)0.0172 (15)
C130.0354 (15)0.0573 (18)0.0494 (17)0.0161 (14)0.0132 (13)0.0192 (14)
C140.0445 (18)0.085 (2)0.0428 (17)0.0208 (17)0.0160 (14)0.0188 (16)
C150.0387 (16)0.0570 (18)0.0464 (17)0.0164 (14)0.0217 (13)0.0134 (14)
C160.0461 (19)0.090 (3)0.068 (2)0.0229 (18)0.0134 (17)0.033 (2)
C170.0524 (19)0.057 (2)0.062 (2)0.0079 (16)0.0129 (16)0.0144 (16)
C180.0323 (14)0.0434 (15)0.0396 (14)0.0130 (12)0.0160 (12)0.0147 (12)
C190.0359 (15)0.0565 (18)0.0455 (16)0.0131 (13)0.0198 (13)0.0107 (14)
C200.0385 (16)0.0622 (19)0.064 (2)0.0071 (14)0.0298 (15)0.0131 (15)
C210.0308 (15)0.0565 (18)0.0564 (18)0.0072 (13)0.0160 (14)0.0101 (15)
C220.0400 (16)0.0530 (18)0.0504 (17)0.0098 (14)0.0152 (14)0.0057 (14)
C230.0340 (15)0.0446 (16)0.0431 (15)0.0135 (12)0.0149 (12)0.0143 (13)
C240.0440 (19)0.077 (2)0.086 (3)0.0034 (17)0.0236 (18)0.005 (2)
C250.0425 (19)0.090 (3)0.085 (3)0.0297 (18)0.0168 (18)0.024 (2)
Geometric parameters (Å, º) top
C1—C21.376 (4)C12—C131.513 (4)
C1—C61.384 (4)C12—H12A0.9700
C1—H1A0.9300C12—H12B0.9700
O1—C31.365 (3)C13—C141.525 (4)
O1—H1B0.8500C13—C171.526 (4)
C2—O31.368 (3)C13—C161.527 (4)
C2—C31.403 (4)C14—C151.504 (4)
O2—C41.379 (3)C14—H14A0.9700
O2—C81.402 (4)C14—H14B0.9700
O3—C71.422 (4)C16—H16A0.9600
C3—C41.365 (4)C16—H16B0.9600
O4—C151.280 (3)C16—H16C0.9600
C4—C51.381 (4)C17—H17A0.9600
O5—C111.295 (3)C17—H17B0.9600
O5—H5B0.8200C17—H17C0.9600
C5—C61.392 (4)C18—C191.385 (4)
C5—H5A0.9300C18—C231.406 (4)
O6—C231.276 (3)C19—C201.495 (4)
C6—C91.542 (3)C20—C211.513 (4)
O7—C191.305 (3)C20—H20A0.9700
O7—H7D0.8200C20—H20B0.9700
C7—H7A0.9600C21—C251.523 (4)
C7—H7B0.9600C21—C241.528 (4)
C7—H7C0.9600C21—C221.533 (4)
C8—H8A0.9600C22—C231.501 (4)
C8—H8B0.9600C22—H22A0.9700
C8—H8C0.9600C22—H22B0.9700
C9—C101.519 (3)C24—H24A0.9600
C9—C181.525 (4)C24—H24B0.9600
C9—H9A0.9800C24—H24C0.9600
C10—C111.389 (4)C25—H25A0.9600
C10—C151.409 (4)C25—H25B0.9600
C11—C121.503 (4)C25—H25C0.9600
C2—C1—C6120.5 (3)C15—C14—H14A108.7
C2—C1—H1A119.7C13—C14—H14A108.7
C6—C1—H1A119.7C15—C14—H14B108.7
C3—O1—H1B118.7C13—C14—H14B108.7
O3—C2—C1125.3 (3)H14A—C14—H14B107.6
O3—C2—C3114.6 (2)O4—C15—C10121.5 (3)
C1—C2—C3120.2 (3)O4—C15—C14116.4 (2)
C4—O2—C8118.6 (2)C10—C15—C14122.1 (2)
C2—O3—C7117.5 (2)C13—C16—H16A109.5
O1—C3—C4121.2 (3)C13—C16—H16B109.5
O1—C3—C2119.7 (3)H16A—C16—H16B109.5
C4—C3—C2119.1 (2)C13—C16—H16C109.5
C3—C4—O2114.6 (2)H16A—C16—H16C109.5
C3—C4—C5121.0 (3)H16B—C16—H16C109.5
O2—C4—C5124.4 (3)C13—C17—H17A109.5
C11—O5—H5B109.5C13—C17—H17B109.5
C4—C5—C6120.1 (3)H17A—C17—H17B109.5
C4—C5—H5A119.9C13—C17—H17C109.5
C6—C5—H5A119.9H17A—C17—H17C109.5
C1—C6—C5119.0 (2)H17B—C17—H17C109.5
C1—C6—C9118.1 (2)C19—C18—C23117.7 (2)
C5—C6—C9122.7 (2)C19—C18—C9119.8 (2)
C19—O7—H7D109.5C23—C18—C9122.5 (2)
O3—C7—H7A109.5O7—C19—C18122.9 (3)
O3—C7—H7B109.5O7—C19—C20115.3 (2)
H7A—C7—H7B109.5C18—C19—C20121.8 (3)
O3—C7—H7C109.5C19—C20—C21113.5 (2)
H7A—C7—H7C109.5C19—C20—H20A108.9
H7B—C7—H7C109.5C21—C20—H20A108.9
O2—C8—H8A109.5C19—C20—H20B108.9
O2—C8—H8B109.5C21—C20—H20B108.9
H8A—C8—H8B109.5H20A—C20—H20B107.7
O2—C8—H8C109.5C20—C21—C25109.9 (3)
H8A—C8—H8C109.5C20—C21—C24109.9 (3)
H8B—C8—H8C109.5C25—C21—C24108.8 (3)
C10—C9—C18115.0 (2)C20—C21—C22107.2 (2)
C10—C9—C6114.9 (2)C25—C21—C22110.2 (3)
C18—C9—C6113.0 (2)C24—C21—C22110.8 (3)
C10—C9—H9A104.0C23—C22—C21115.0 (2)
C18—C9—H9A104.0C23—C22—H22A108.5
C6—C9—H9A104.0C21—C22—H22A108.5
C11—C10—C15116.8 (2)C23—C22—H22B108.5
C11—C10—C9124.4 (2)C21—C22—H22B108.5
C15—C10—C9118.6 (2)H22A—C22—H22B107.5
O5—C11—C10123.4 (2)O6—C23—C18121.5 (2)
O5—C11—C12114.6 (2)O6—C23—C22116.7 (2)
C10—C11—C12122.0 (2)C18—C23—C22121.8 (2)
C11—C12—C13114.9 (2)C21—C24—H24A109.5
C11—C12—H12A108.5C21—C24—H24B109.5
C13—C12—H12A108.5H24A—C24—H24B109.5
C11—C12—H12B108.5C21—C24—H24C109.5
C13—C12—H12B108.5H24A—C24—H24C109.5
H12A—C12—H12B107.5H24B—C24—H24C109.5
C12—C13—C14107.1 (2)C21—C25—H25A109.5
C12—C13—C17110.7 (2)C21—C25—H25B109.5
C14—C13—C17111.1 (3)H25A—C25—H25B109.5
C12—C13—C16109.6 (3)C21—C25—H25C109.5
C14—C13—C16110.1 (2)H25A—C25—H25C109.5
C17—C13—C16108.3 (2)H25B—C25—H25C109.5
C15—C14—C13114.1 (2)
C6—C1—C2—O3178.3 (2)C11—C12—C13—C1449.1 (3)
C6—C1—C2—C30.1 (4)C11—C12—C13—C1772.1 (3)
C1—C2—O3—C70.3 (4)C11—C12—C13—C16168.6 (2)
C3—C2—O3—C7178.5 (3)C12—C13—C14—C1548.9 (3)
O3—C2—C3—O10.4 (4)C17—C13—C14—C1572.1 (3)
C1—C2—C3—O1178.7 (3)C16—C13—C14—C15168.0 (3)
O3—C2—C3—C4178.7 (3)C11—C10—C15—O4164.9 (3)
C1—C2—C3—C40.4 (4)C9—C10—C15—O410.3 (4)
O1—C3—C4—O20.1 (4)C11—C10—C15—C1413.4 (4)
C2—C3—C4—O2179.0 (3)C9—C10—C15—C14171.4 (3)
O1—C3—C4—C5179.8 (3)C13—C14—C15—O4162.0 (3)
C2—C3—C4—C50.7 (4)C13—C14—C15—C1019.6 (4)
C8—O2—C4—C3177.3 (3)C10—C9—C18—C1988.5 (3)
C8—O2—C4—C52.4 (5)C6—C9—C18—C19136.8 (3)
C3—C4—C5—C62.1 (5)C10—C9—C18—C2392.3 (3)
O2—C4—C5—C6177.6 (3)C6—C9—C18—C2342.5 (3)
C2—C1—C6—C51.2 (4)C23—C18—C19—O7173.2 (3)
C2—C1—C6—C9176.9 (2)C9—C18—C19—O77.5 (4)
C4—C5—C6—C12.3 (4)C23—C18—C19—C205.2 (4)
C4—C5—C6—C9177.8 (2)C9—C18—C19—C20174.1 (2)
C1—C6—C9—C10177.2 (2)O7—C19—C20—C21151.3 (3)
C5—C6—C9—C107.2 (4)C18—C19—C20—C2130.2 (4)
C1—C6—C9—C1842.5 (3)C19—C20—C21—C2567.0 (3)
C5—C6—C9—C18142.0 (3)C19—C20—C21—C24173.3 (3)
C18—C9—C10—C1177.8 (3)C19—C20—C21—C2252.8 (3)
C6—C9—C10—C1156.1 (3)C20—C21—C22—C2345.0 (3)
C18—C9—C10—C1596.9 (3)C25—C21—C22—C2374.6 (3)
C6—C9—C10—C15129.2 (3)C24—C21—C22—C23164.9 (3)
C15—C10—C11—O5167.2 (2)C19—C18—C23—O6165.7 (2)
C9—C10—C11—O57.6 (4)C9—C18—C23—O615.1 (4)
C15—C10—C11—C1213.6 (4)C19—C18—C23—C2213.8 (4)
C9—C10—C11—C12171.5 (2)C9—C18—C23—C22165.5 (2)
O5—C11—C12—C13159.7 (2)C21—C22—C23—O6167.3 (2)
C10—C11—C12—C1319.5 (4)C21—C22—C23—C1813.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.852.302.649 (4)105
O5—H5B···O60.821.802.604 (3)166
O7—H7D···O40.821.842.647 (3)168
C9—H9A···O40.982.352.825 (3)109
C9—H9A···O70.982.452.865 (4)105

Experimental details

Crystal data
Chemical formulaC25H32O7
Mr444.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1620 (18), 10.979 (2), 13.120 (3)
α, β, γ (°)100.82 (3), 109.04 (3), 104.16 (3)
V3)1157.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4515, 4230, 2652
Rint0.023
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.184, 1.00
No. of reflections4230
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.30

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O60.821.802.604 (3)166
O7—H7D···O40.821.842.647 (3)168
 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

References

First citationDavies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent No. 6911442.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. A35, 2238–2243.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Zhang, X.-J. & Zhu, S.-L. (2004). Acta Cryst. E60, o1870–o1872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent No. 2005060748.  Google Scholar
First citationYang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds