metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-(morpholin-4-yl)-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}cadmium

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 9 February 2011; accepted 15 February 2011; online 19 February 2011)

The CdII ion in the title compound, [CdBr2(C13H19N3O)], is five-coordinated by the N,N′,N′′-tridentate Schiff base ligand and two Br atoms in a distorted square-pyramidal geometry. In the crystal, inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds link adjacent mol­ecules into layers parallel to the ab plane. An intra­molecular C—H⋯Br inter­action is also observed.

Related literature

For the crystal structure of the analogous CdCl2 complex, see: Ikmal Hisham et al. (2010[Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.]). For the crystal structures of similar CdBr2 complexes, see: Bermejo et al. (1999[Bermejo, E., Carballo, R., Castineiras, A., Dominguez, R., Liberta, A. E., Maichle-Moessmer, C., Salberg, M. M. & West, D. X. (1999). Eur. J. Inorg. Chem. pp. 965-973.], 2003[Bermejo, E., Castineiras, A., Fostiak, L. M., Santos, I. G., Swearingen, J. K. & West, D. X. (2003). Polyhedron, 23, 2303-2313.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C13H19N3O)]

  • Mr = 505.53

  • Orthorhombic, P 21 21 21

  • a = 9.1906 (8) Å

  • b = 12.2604 (10) Å

  • c = 14.7499 (12) Å

  • V = 1662.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.12 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.237, Tmax = 0.389

  • 20236 measured reflections

  • 3642 independent reflections

  • 3445 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.041

  • S = 1.09

  • 3642 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1556 Friedel pairs

  • Flack parameter: 0.023 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.42 3.132 (4) 131
C7—H7B⋯Br1ii 0.98 2.92 3.840 (4) 157
C10—H10A⋯O1iii 0.99 2.45 3.383 (4) 156
C11—H11B⋯Br2 0.99 2.91 3.727 (4) 141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained upon the reaction of 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine with CdII ion in the presence of potassium bromide. Similar to the structure of the analogous CdCl2 complex (Ikmal Hisham et al., 2010), the metal center is five-coordinated by the N,N',N"-tridentate Schiff base ligand and two halogen atoms. The geometry of the complexes can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramid τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison et al.,1984). The τ value in the present structure is calculated to be 0.18, indicative of a distorted square-pyramidal geometry. The Cd—Br bond lengths in the complex are in agreement with the values reported in the literature (Bermejo et al., 1999; Bermejo et al., 2003). In the crystal, the adjacent molecules are connected together via C—H···O and C—H···Br hydrogen bonds, forming infinite layers parallel to the ab plane. Moreover an intramolecluar C—H···Br occurs.

Related literature top

For the crystal structure of the analogous CdCl2 complex, see: Ikmal Hisham et al. (2010). For the crystal structures of similar CdBr2 complexes, see: Bermejo et al. (1999, 2003) For the geometry of complexes, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed. After 2 hr a solution of cadmium(II) acetate dihydrate (0.44 g, 1.65 mmol) and potassium bromide (0.196 g, 1.65 mmol) in a minimum amount of water was added. The resulting solution was refluxed for 30 min, and then left at room temperature. The crystals of the title complex were obtained in a few days.

Refinement top

H atoms were positioned geometrically (C-H: 0.95Å; C-H2: 0.99Å;C-H3: 0.98Å) and allowed to ride. Uiso(H) set to 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level.
Dibromido{2-(morpholin-4-yl)-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}cadmium top
Crystal data top
[CdBr2(C13H19N3O)]F(000) = 976
Mr = 505.53Dx = 2.020 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5963 reflections
a = 9.1906 (8) Åθ = 2.6–30.7°
b = 12.2604 (10) ŵ = 6.12 mm1
c = 14.7499 (12) ÅT = 100 K
V = 1662.0 (2) Å3Block, colorless
Z = 40.33 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube3445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.237, Tmax = 0.389k = 1515
20236 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.006P)2 + 1.6071P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3642 reflectionsΔρmax = 0.73 e Å3
182 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), 1556 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (9)
Crystal data top
[CdBr2(C13H19N3O)]V = 1662.0 (2) Å3
Mr = 505.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1906 (8) ŵ = 6.12 mm1
b = 12.2604 (10) ÅT = 100 K
c = 14.7499 (12) Å0.33 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3445 reflections with I > 2σ(I)
Tmin = 0.237, Tmax = 0.389Rint = 0.032
20236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.041Δρmax = 0.73 e Å3
S = 1.09Δρmin = 0.54 e Å3
3642 reflectionsAbsolute structure: Flack (1983), 1556 Friedel pairs
182 parametersAbsolute structure parameter: 0.023 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.03808 (2)0.00442 (2)0.919266 (13)0.01367 (5)
Br10.21463 (3)0.00329 (4)0.84484 (2)0.02368 (7)
Br20.07480 (3)0.00774 (4)1.092730 (19)0.02169 (7)
O10.0135 (3)0.34931 (19)0.93888 (17)0.0151 (6)
N10.0632 (3)0.1977 (2)0.90768 (19)0.0163 (6)
N20.2634 (3)0.0505 (2)0.86157 (18)0.0143 (6)
N30.1405 (3)0.1675 (2)0.85991 (18)0.0127 (6)
C10.0399 (4)0.2704 (3)0.9296 (2)0.0194 (7)
H10.13340.24430.94630.023*
C20.0157 (5)0.3826 (3)0.9291 (3)0.0225 (9)
H20.09080.43220.94510.027*
C30.1197 (4)0.4192 (3)0.9049 (3)0.0240 (8)
H30.14000.49510.90510.029*
C40.2272 (4)0.3455 (3)0.8800 (2)0.0209 (8)
H40.32060.37010.86160.025*
C50.1948 (4)0.2342 (3)0.8827 (2)0.0145 (7)
C60.3044 (4)0.1495 (3)0.8549 (2)0.0146 (7)
C70.4496 (4)0.1874 (3)0.8209 (3)0.0253 (8)
H7A0.43800.21990.76060.038*
H7B0.51620.12520.81720.038*
H7C0.48940.24200.86270.038*
C80.3532 (4)0.0426 (2)0.8376 (2)0.0164 (7)
H8A0.40340.07090.89220.020*
H8B0.42780.02070.79280.020*
C90.2553 (4)0.1303 (3)0.7977 (2)0.0176 (7)
H9A0.20930.10160.74190.021*
H9B0.31600.19370.78020.021*
C100.2041 (4)0.2361 (3)0.9323 (2)0.0167 (7)
H10A0.26920.19120.97050.020*
H10B0.26300.29500.90470.020*
C110.0853 (4)0.2858 (3)0.9907 (2)0.0181 (7)
H11A0.13030.33231.03780.022*
H11B0.03130.22671.02170.022*
C120.0787 (4)0.2837 (3)0.8695 (2)0.0177 (7)
H12A0.13560.22420.89780.021*
H12B0.14630.32900.83330.021*
C130.0361 (4)0.2354 (3)0.8079 (2)0.0174 (7)
H13A0.08940.29500.77700.021*
H13B0.01140.19010.76090.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01446 (9)0.01227 (9)0.01429 (9)0.00005 (13)0.00293 (7)0.00048 (13)
Br10.01711 (14)0.02244 (15)0.03150 (16)0.0017 (2)0.00424 (12)0.0024 (2)
Br20.02749 (16)0.02287 (17)0.01472 (13)0.00513 (19)0.00019 (11)0.00188 (19)
O10.0147 (14)0.0118 (11)0.0190 (14)0.0018 (10)0.0005 (10)0.0025 (10)
N10.0184 (15)0.0152 (13)0.0154 (14)0.0012 (11)0.0020 (12)0.0039 (11)
N20.0147 (15)0.0163 (13)0.0120 (13)0.0018 (11)0.0003 (11)0.0003 (11)
N30.0155 (14)0.0100 (13)0.0128 (14)0.0002 (11)0.0015 (11)0.0010 (11)
C10.0217 (18)0.0191 (16)0.0173 (18)0.0019 (15)0.0056 (15)0.0012 (14)
C20.032 (2)0.0147 (16)0.021 (2)0.0080 (16)0.0011 (17)0.0001 (15)
C30.034 (2)0.0116 (15)0.027 (2)0.0018 (14)0.0087 (17)0.0008 (15)
C40.0203 (18)0.0163 (17)0.0260 (19)0.0043 (14)0.0043 (15)0.0000 (14)
C50.0152 (18)0.0154 (16)0.0128 (17)0.0028 (13)0.0030 (15)0.0017 (14)
C60.0145 (17)0.0176 (16)0.0116 (16)0.0009 (13)0.0011 (13)0.0041 (13)
C70.0204 (19)0.0187 (17)0.037 (2)0.0055 (15)0.0066 (17)0.0005 (15)
C80.0134 (17)0.0135 (15)0.0224 (18)0.0018 (12)0.0040 (14)0.0031 (13)
C90.0202 (18)0.0164 (17)0.0162 (17)0.0017 (13)0.0064 (14)0.0013 (14)
C100.0169 (17)0.0155 (16)0.0178 (18)0.0023 (13)0.0007 (15)0.0045 (14)
C110.0149 (17)0.0172 (17)0.0223 (18)0.0020 (13)0.0011 (14)0.0052 (14)
C120.0183 (18)0.0150 (16)0.0198 (18)0.0016 (13)0.0013 (15)0.0005 (13)
C130.0210 (18)0.0165 (16)0.0147 (16)0.0011 (14)0.0007 (14)0.0049 (13)
Geometric parameters (Å, º) top
Cd1—N22.309 (3)C4—H40.9500
Cd1—N12.388 (3)C5—C61.504 (5)
Cd1—N32.469 (3)C6—C71.500 (5)
Cd1—Br12.5690 (4)C7—H7A0.9800
Cd1—Br22.5851 (4)C7—H7B0.9800
O1—C111.420 (4)C7—H7C0.9800
O1—C121.433 (4)C8—C91.520 (5)
N1—C11.340 (4)C8—H8A0.9900
N1—C51.341 (4)C8—H8B0.9900
N2—C61.275 (4)C9—H9A0.9900
N2—C81.452 (4)C9—H9B0.9900
N3—C91.471 (4)C10—C111.518 (5)
N3—C101.479 (4)C10—H10A0.9900
N3—C131.484 (4)C10—H10B0.9900
C1—C21.393 (5)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.370 (6)C12—C131.514 (5)
C2—H20.9500C12—H12A0.9900
C3—C41.388 (5)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.397 (5)C13—H13B0.9900
N2—Cd1—N169.15 (9)C6—C7—H7B109.5
N2—Cd1—N374.71 (9)H7A—C7—H7B109.5
N1—Cd1—N3141.76 (9)C6—C7—H7C109.5
N2—Cd1—Br1130.89 (7)H7A—C7—H7C109.5
N1—Cd1—Br193.56 (7)H7B—C7—H7C109.5
N3—Cd1—Br1100.87 (6)N2—C8—C9108.3 (3)
N2—Cd1—Br2105.18 (7)N2—C8—H8A110.0
N1—Cd1—Br296.63 (7)C9—C8—H8A110.0
N3—Cd1—Br2104.59 (6)N2—C8—H8B110.0
Br1—Cd1—Br2122.729 (12)C9—C8—H8B110.0
C11—O1—C12110.1 (2)H8A—C8—H8B108.4
C1—N1—C5118.8 (3)N3—C9—C8113.7 (3)
C1—N1—Cd1125.1 (2)N3—C9—H9A108.8
C5—N1—Cd1116.0 (2)C8—C9—H9A108.8
C6—N2—C8124.2 (3)N3—C9—H9B108.8
C6—N2—Cd1121.8 (2)C8—C9—H9B108.8
C8—N2—Cd1114.02 (19)H9A—C9—H9B107.7
C9—N3—C10110.1 (3)N3—C10—C11110.7 (3)
C9—N3—C13108.4 (3)N3—C10—H10A109.5
C10—N3—C13108.1 (2)C11—C10—H10A109.5
C9—N3—Cd1103.29 (18)N3—C10—H10B109.5
C10—N3—Cd1112.3 (2)C11—C10—H10B109.5
C13—N3—Cd1114.57 (19)H10A—C10—H10B108.1
N1—C1—C2122.8 (3)O1—C11—C10112.0 (3)
N1—C1—H1118.6O1—C11—H11A109.2
C2—C1—H1118.6C10—C11—H11A109.2
C3—C2—C1118.0 (4)O1—C11—H11B109.2
C3—C2—H2121.0C10—C11—H11B109.2
C1—C2—H2121.0H11A—C11—H11B107.9
C2—C3—C4120.1 (3)O1—C12—C13110.9 (3)
C2—C3—H3119.9O1—C12—H12A109.5
C4—C3—H3119.9C13—C12—H12A109.5
C3—C4—C5118.4 (3)O1—C12—H12B109.5
C3—C4—H4120.8C13—C12—H12B109.5
C5—C4—H4120.8H12A—C12—H12B108.0
N1—C5—C4121.7 (3)N3—C13—C12111.1 (3)
N1—C5—C6116.6 (3)N3—C13—H13A109.4
C4—C5—C6121.6 (3)C12—C13—H13A109.4
N2—C6—C7125.7 (3)N3—C13—H13B109.4
N2—C6—C5116.0 (3)C12—C13—H13B109.4
C7—C6—C5118.2 (3)H13A—C13—H13B108.0
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.423.132 (4)131
C7—H7B···Br1ii0.982.923.840 (4)157
C10—H10A···O1iii0.992.453.383 (4)156
C11—H11B···Br20.992.913.727 (4)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[CdBr2(C13H19N3O)]
Mr505.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1906 (8), 12.2604 (10), 14.7499 (12)
V3)1662.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.12
Crystal size (mm)0.33 × 0.27 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.237, 0.389
No. of measured, independent and
observed [I > 2σ(I)] reflections
20236, 3642, 3445
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.041, 1.09
No. of reflections3642
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.54
Absolute structureFlack (1983), 1556 Friedel pairs
Absolute structure parameter0.023 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.423.132 (4)131
C7—H7B···Br1ii0.982.923.840 (4)157
C10—H10A···O1iii0.992.453.383 (4)156
C11—H11B···Br20.992.913.727 (4)141
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBermejo, E., Carballo, R., Castineiras, A., Dominguez, R., Liberta, A. E., Maichle-Moessmer, C., Salberg, M. M. & West, D. X. (1999). Eur. J. Inorg. Chem. pp. 965–973.  CrossRef Google Scholar
First citationBermejo, E., Castineiras, A., Fostiak, L. M., Santos, I. G., Swearingen, J. K. & West, D. X. (2003). Polyhedron, 23, 2303–2313.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIkmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds