organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Bis(3-chloro­anilino)-N,N′-bis­­(3-chloro­phen­yl)octane-1,8-di­imine

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 January 2011; accepted 7 February 2011; online 12 February 2011)

There are two half-mol­ecules in the asymmetric unit of the title compound, C32H30Cl4N4, in both of which the N—H bonds are syn to the meta-chloro substituents in the adjacent benzene ring. The other two Cl atoms of these two mol­ecules are disordered with occunpancy ratios of 0.79 (2):0.21 (2) and 0.68 (1):0.32 (1). Adjacent chloro­phenyl rings make dihedral angles of 74.3 (2) and 63.0 (2)° in the two mol­ecules. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into infinite chains.

Related literature

For our study on the effect of substituents on the structures of this class of compounds, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.], 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.], 2010[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1363.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30Cl4N4

  • Mr = 612.40

  • Monoclinic, C 2/c

  • a = 22.349 (3) Å

  • b = 13.223 (2) Å

  • c = 22.644 (3) Å

  • β = 108.79 (1)°

  • V = 6335.1 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.61 mm−1

  • T = 299 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.365, Tmax = 0.466

  • 11300 measured reflections

  • 5657 independent reflections

  • 3976 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.251

  • S = 1.13

  • 5657 reflections

  • 381 parameters

  • 41 restraints

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.86 2.24 3.049 (4) 157
N4—H4A⋯N1i 0.86 2.23 3.072 (4) 168
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amidine moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of substitutions on the structures of this class of compounds (Gowda et al., 2007; 2009; 2010), the crystal structure of N1,N1-Bis(3-chlorophenyl)- N2,N2-bis(3-χhlorophenyl)-suberamidine has been determined (I) (Fig. 1). The conformations of N—H bond is syn to the meta-chloro substituent in the adjacent benzene ring.

The torsion angles of C1—N1—C7—N2, C1—N1—C7—C14, C8—N2—C7—N1 C8—N2—C7—C14, N1—C7—C14—C15 and N2—C7—C14—C15 are 172.6 (3)°, -12.9 (6)°, -8.8 (6)°, 176.2 (4)°, -86.5 (5)° and 88.4 (4)°, while those of C17—N3—C23—N4, C17—N3—C23—C30, C24—N4—C23—N3, C24—N4—C23—C30, N3—C23—C30—C31 and N4—C23—C30—C31 are 172.7 (3)°, -11.1 (5)°, -14.3 (5)°, 169.0 (3)°, 128.2 (4)° and -55.5 (4)°.

The conformations of the amine groups with respect to the attached phenyl rings are given by the torsion angles of C2—C1—N1—C7 = -80.6 (4), C6—C1—N1—C7 = 106.1 (4), C13—C8—N2—C7 = 153.8 (4), C9—C8—N2—C7 = -27.9 (5), C18—C17—N3—C23 = 103.0 (5), C22—C17—N3—C23 = -80.3 (5), C29—C24—N4—C23 = -41.3 (6), C25—C24—N4—C23 = 143.0 (4)

In the structure, two sets of phenyl rings make inter planar angles of 74.3 (2)° (C1/C6 and C8/C13 rings) and 63.0 (2)° (C17/C22 and C24/C29 rings). Further, C1/C6 phenyl ring makes a dihedral angle of 88.5 (2)° with the plane of the aliphatic group N1—C7—C14—C15—C16 and C8/C13 ring makes the angle of 20.7 (5)° with the plane of the group N2—C7—C14—C15—C16, while C17/C22 phenyl ring makes a dihedral angle of 78.9 (4)° with the plane of the group, N3—C23—C30—C31—C32 and C24/C29 ring makes the angle of 75.1 (2)° with the plane of the group, N4—C23—C30—C31—C32.

Atoms Cl2 and Cl4 in (I) are disordered and were refined using a split model. The site-occupation factors were refined so that their sum was unity [0.79 (2) and 0.22 (2) for Cl2, 0.68 (1) and 0.32 (1) for Cl4, respectively]. The corresponding bond distances in the disordered groups were restrained to be equal.

The intermolecular N–H···N hydrogen bonds (Table 1) link the molecules into infinite chains (Fig. 2).

Related literature top

For our study on the effect of substituents on the structures

of this class of compounds, see: Gowda et al. (2007, 2009, 2010).

Experimental top

Suberic acid (0.2 mol) was heated with Phosphorus oxychloride (1.2 mol) at 70°C for 2 h. The acid chloride obtained was treated with 3-chloroaniline (0.8 mol). The product obtained was added to crushed ice to obtain the precipitate. It was thoroughly washed with water and then with saturated sodium bicarbonate solution and washed again with water. It was then given a wash with 2 N HCl. It was again washed with water, filtered, dried and recrystallized from ethanol.

Prism like colorless single crystals of the title compound used in x-ray diffraction studies were obtained by a slow evaporation of its solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Atoms Cl2 and Cl4 are disordered and were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.79 (2) and 0.21 (2) for Cl2, 0.68 (1) and 0.32 (1) for Cl4, respectively] and their corresponding bond distances in the disordered groups were restrained to be equal. The Uij components of Cl2, Cl4, C16 and C27 were restrained to approximate isotropic behavior.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level. Both disorder components are shown. The minor disorder components are shown with dashed bonds. Symmetry codes for the unlabeled atoms: -x+1, y, -z+1/2 and -x+3/2, -y+1/2, -z+1.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines. For more clarity the minor disorder components were omitted.
1,8-Bis(3-chloroanilino)-N,N'-bis(3-chlorophenyl)octane- 1,8-diimine top
Crystal data top
C32H30Cl4N4F(000) = 2544
Mr = 612.40Dx = 1.284 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 22.349 (3) Åθ = 4.1–18.3°
b = 13.223 (2) ŵ = 3.61 mm1
c = 22.644 (3) ÅT = 299 K
β = 108.79 (1)°Prism, colourless
V = 6335.1 (15) Å30.35 × 0.28 × 0.25 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
3976 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 67.0°, θmin = 3.9°
ω/2θ scansh = 2626
Absorption correction: ψ scan
(North et al., 1968)
k = 150
Tmin = 0.365, Tmax = 0.466l = 2727
11300 measured reflections3 standard reflections every 120 min
5657 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1192P)2 + 8.1108P]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max = 0.012
381 parametersΔρmax = 1.08 e Å3
41 restraintsΔρmin = 0.80 e Å3
Crystal data top
C32H30Cl4N4V = 6335.1 (15) Å3
Mr = 612.40Z = 8
Monoclinic, C2/cCu Kα radiation
a = 22.349 (3) ŵ = 3.61 mm1
b = 13.223 (2) ÅT = 299 K
c = 22.644 (3) Å0.35 × 0.28 × 0.25 mm
β = 108.79 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3976 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.365, Tmax = 0.4663 standard reflections every 120 min
11300 measured reflections intensity decay: 1.0%
5657 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08041 restraints
wR(F2) = 0.251H-atom parameters constrained
S = 1.13Δρmax = 1.08 e Å3
5657 reflectionsΔρmin = 0.80 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.63535 (16)0.8110 (3)0.10493 (18)0.0540 (9)
C20.61041 (18)0.7419 (4)0.0579 (2)0.0638 (11)
H20.62060.67370.06500.077*
C30.57069 (19)0.7723 (5)0.0006 (2)0.0774 (14)
C40.5548 (2)0.8728 (5)0.0114 (3)0.0926 (18)
H40.52830.89330.05040.111*
C50.5787 (2)0.9407 (5)0.0347 (3)0.0955 (19)
H50.56781.00850.02720.115*
C60.6187 (2)0.9125 (4)0.0929 (3)0.0751 (13)
H60.63440.96090.12380.090*
C70.66481 (15)0.7380 (3)0.20450 (18)0.0492 (8)
C80.77434 (16)0.6888 (3)0.26857 (18)0.0478 (8)
C90.80067 (18)0.6761 (3)0.2217 (2)0.0620 (10)
H90.77560.67640.17990.074*
C100.8655 (2)0.6627 (4)0.2385 (3)0.0802 (14)
C110.9041 (2)0.6637 (5)0.2994 (3)0.0901 (17)
H110.94770.65660.30950.108*
C120.8765 (2)0.6757 (4)0.3453 (3)0.0830 (15)
H120.90150.67540.38700.100*
C130.8120 (2)0.6880 (3)0.3298 (2)0.0657 (11)
H130.79390.69580.36110.079*
C140.59767 (18)0.7315 (4)0.2054 (2)0.0710 (13)
H14A0.59280.67120.22780.085*
H14B0.56900.72640.16310.085*
C150.5809 (3)0.8240 (6)0.2367 (3)0.117 (2)
H15A0.59210.88520.21900.140*
H15B0.60380.82310.28100.140*
C160.5112 (4)0.8207 (10)0.2255 (3)0.199 (4)
H16A0.49260.87840.19960.238*
H16B0.49490.76060.20110.238*
C170.63312 (17)0.6138 (3)0.38310 (17)0.0518 (9)
C180.6569 (2)0.7033 (4)0.4113 (2)0.0776 (14)
H180.69130.73350.40380.093*
C190.6292 (3)0.7482 (4)0.4511 (3)0.0897 (16)
C200.5771 (2)0.7112 (5)0.4608 (2)0.0844 (15)
H200.55670.74670.48420.101*
C210.5554 (3)0.6213 (5)0.4355 (3)0.0998 (19)
H210.52200.59100.44490.120*
C220.5819 (3)0.5725 (4)0.3954 (3)0.0885 (17)
H220.56490.51170.37690.106*
C230.69546 (16)0.4917 (3)0.35604 (16)0.0447 (8)
C240.68501 (19)0.4508 (3)0.24635 (17)0.0528 (9)
C250.7241 (2)0.4475 (3)0.21015 (19)0.0644 (11)
H250.76770.44340.22850.077*
C260.6968 (4)0.4506 (4)0.1452 (2)0.0906 (18)
C270.6336 (4)0.4577 (5)0.1182 (3)0.104 (2)
H270.61620.46060.07500.125*
C280.5958 (3)0.4607 (5)0.1543 (3)0.110 (2)
H280.55220.46600.13560.132*
C290.6208 (2)0.4560 (4)0.2186 (2)0.0784 (13)
H290.59420.45640.24290.094*
C300.72564 (18)0.4535 (3)0.42161 (16)0.0509 (8)
H30A0.70850.49130.44920.061*
H30B0.77060.46730.43420.061*
C310.71619 (18)0.3416 (3)0.43018 (17)0.0526 (9)
H31A0.73070.30340.40080.063*
H31B0.67150.32810.42110.063*
C320.75182 (19)0.3065 (3)0.49619 (17)0.0524 (9)
H32A0.79580.32630.50670.063*
H32B0.73440.34000.52510.063*
Cl10.53949 (8)0.68487 (18)0.05730 (8)0.1244 (7)
Cl2A0.8972 (3)0.6372 (10)0.1775 (3)0.125 (2)0.79 (2)
Cl2B0.9069 (5)0.695 (2)0.1895 (8)0.092 (6)0.21 (2)
Cl30.74629 (14)0.44327 (16)0.10060 (9)0.1560 (10)
Cl4A0.6688 (3)0.8514 (4)0.4962 (3)0.123 (2)0.677 (14)
Cl4B0.6346 (7)0.8849 (7)0.4577 (9)0.154 (4)0.323 (14)
N10.68110 (12)0.7822 (2)0.16139 (14)0.0510 (7)
N20.70837 (13)0.6998 (2)0.25587 (14)0.0508 (7)
H2A0.69410.67940.28480.061*
N30.65826 (15)0.5678 (2)0.33991 (14)0.0522 (7)
N40.71358 (15)0.4416 (2)0.31194 (13)0.0519 (7)
H4A0.74510.40090.32500.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (16)0.065 (2)0.063 (2)0.0013 (16)0.0191 (16)0.0114 (19)
C20.049 (2)0.075 (3)0.072 (3)0.0037 (19)0.026 (2)0.006 (2)
C30.044 (2)0.118 (4)0.071 (3)0.013 (2)0.020 (2)0.001 (3)
C40.058 (3)0.120 (5)0.089 (4)0.004 (3)0.008 (3)0.038 (4)
C50.062 (3)0.090 (4)0.120 (5)0.011 (3)0.009 (3)0.040 (4)
C60.054 (2)0.064 (3)0.098 (3)0.0056 (19)0.013 (2)0.016 (3)
C70.0392 (17)0.050 (2)0.064 (2)0.0006 (14)0.0234 (16)0.0047 (17)
C80.0425 (17)0.0381 (17)0.063 (2)0.0004 (14)0.0169 (16)0.0077 (16)
C90.050 (2)0.072 (3)0.069 (3)0.0139 (18)0.0263 (19)0.016 (2)
C100.053 (2)0.097 (4)0.100 (4)0.020 (2)0.037 (2)0.030 (3)
C110.047 (2)0.103 (4)0.115 (4)0.011 (2)0.018 (3)0.027 (3)
C120.057 (2)0.091 (4)0.085 (3)0.001 (2)0.000 (2)0.009 (3)
C130.061 (2)0.067 (3)0.065 (3)0.003 (2)0.016 (2)0.003 (2)
C140.0414 (19)0.096 (3)0.082 (3)0.001 (2)0.0286 (19)0.024 (3)
C150.077 (3)0.177 (7)0.113 (5)0.050 (4)0.055 (3)0.009 (5)
C160.107 (5)0.317 (10)0.190 (8)0.058 (6)0.072 (5)0.038 (7)
C170.054 (2)0.055 (2)0.0505 (19)0.0127 (16)0.0225 (16)0.0046 (17)
C180.080 (3)0.076 (3)0.094 (3)0.015 (2)0.053 (3)0.026 (3)
C190.109 (4)0.082 (3)0.101 (4)0.013 (3)0.065 (3)0.032 (3)
C200.077 (3)0.104 (4)0.085 (3)0.007 (3)0.044 (3)0.025 (3)
C210.083 (3)0.127 (5)0.113 (4)0.023 (3)0.064 (3)0.032 (4)
C220.093 (3)0.089 (4)0.107 (4)0.028 (3)0.064 (3)0.032 (3)
C230.0500 (18)0.0448 (18)0.0433 (17)0.0003 (15)0.0206 (15)0.0021 (15)
C240.072 (2)0.0434 (19)0.0433 (18)0.0061 (17)0.0195 (17)0.0022 (16)
C250.100 (3)0.047 (2)0.054 (2)0.008 (2)0.036 (2)0.0037 (18)
C260.172 (6)0.054 (3)0.060 (3)0.016 (3)0.056 (3)0.003 (2)
C270.152 (5)0.081 (4)0.058 (3)0.024 (4)0.003 (3)0.004 (3)
C280.112 (5)0.107 (5)0.079 (4)0.022 (4)0.014 (4)0.022 (4)
C290.075 (3)0.083 (3)0.067 (3)0.004 (2)0.008 (2)0.010 (2)
C300.059 (2)0.051 (2)0.0449 (19)0.0078 (16)0.0199 (16)0.0033 (16)
C310.056 (2)0.054 (2)0.049 (2)0.0063 (16)0.0190 (16)0.0091 (16)
C320.062 (2)0.054 (2)0.0449 (18)0.0097 (17)0.0221 (16)0.0059 (16)
Cl10.0920 (10)0.187 (2)0.0875 (10)0.0210 (11)0.0193 (8)0.0408 (11)
Cl2A0.0884 (18)0.174 (6)0.139 (2)0.049 (3)0.0729 (17)0.027 (3)
Cl2B0.056 (4)0.138 (11)0.096 (6)0.032 (5)0.043 (4)0.032 (6)
Cl30.283 (3)0.1340 (16)0.1014 (12)0.0364 (16)0.1314 (17)0.0228 (11)
Cl4A0.159 (4)0.116 (3)0.124 (3)0.053 (2)0.088 (3)0.066 (2)
Cl4B0.195 (8)0.116 (5)0.171 (9)0.002 (5)0.088 (7)0.069 (5)
N10.0355 (14)0.0593 (18)0.0599 (18)0.0003 (12)0.0177 (13)0.0126 (15)
N20.0437 (15)0.0574 (18)0.0564 (17)0.0006 (13)0.0232 (13)0.0100 (14)
N30.0661 (19)0.0493 (17)0.0488 (16)0.0118 (14)0.0293 (14)0.0063 (14)
N40.0592 (17)0.0569 (18)0.0432 (15)0.0162 (14)0.0216 (13)0.0029 (13)
Geometric parameters (Å, º) top
C1—C21.378 (6)C17—C221.375 (6)
C1—C61.395 (6)C17—N31.413 (5)
C1—N11.409 (5)C18—C191.383 (6)
C2—C31.375 (6)C18—H180.9300
C2—H20.9300C19—C201.344 (7)
C3—C41.380 (8)C19—Cl4A1.763 (6)
C3—Cl11.718 (6)C19—Cl4B1.815 (10)
C4—C51.351 (9)C20—C211.340 (8)
C4—H40.9300C20—H200.9300
C5—C61.384 (7)C21—C221.391 (7)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
C7—N11.287 (5)C23—N31.281 (5)
C7—N21.351 (5)C23—N41.364 (4)
C7—C141.510 (5)C23—C301.506 (5)
C8—C131.370 (6)C24—C291.371 (6)
C8—C91.381 (6)C24—C251.377 (6)
C8—N21.416 (4)C24—N41.420 (5)
C9—C101.386 (6)C25—C261.399 (7)
C9—H90.9300C25—H250.9300
C10—C111.371 (8)C26—C271.348 (9)
C10—Cl2B1.712 (10)C26—Cl31.725 (6)
C10—Cl2A1.777 (7)C27—C281.353 (10)
C11—C121.378 (8)C27—H270.9300
C11—H110.9300C28—C291.383 (8)
C12—C131.379 (6)C28—H280.9300
C12—H120.9300C29—H290.9300
C13—H130.9300C30—C311.516 (5)
C14—C151.518 (8)C30—H30A0.9700
C14—H14A0.9700C30—H30B0.9700
C14—H14B0.9700C31—C321.522 (5)
C15—C161.498 (10)C31—H31A0.9700
C15—H15A0.9700C31—H31B0.9700
C15—H15B0.9700C32—C32ii1.509 (8)
C16—C16i1.355 (9)C32—H32A0.9700
C16—H16A0.9700C32—H32B0.9700
C16—H16B0.9700N2—H2A0.8600
C17—C181.368 (6)N4—H4A0.8600
C2—C1—C6118.1 (4)C17—C18—H18120.4
C2—C1—N1121.1 (4)C19—C18—H18120.4
C6—C1—N1120.5 (4)C20—C19—C18122.9 (5)
C3—C2—C1120.8 (5)C20—C19—Cl4A119.2 (4)
C3—C2—H2119.6C18—C19—Cl4A117.6 (4)
C1—C2—H2119.6C20—C19—Cl4B112.8 (5)
C2—C3—C4121.0 (5)C18—C19—Cl4B116.7 (5)
C2—C3—Cl1120.2 (5)C21—C20—C19117.8 (5)
C4—C3—Cl1118.8 (4)C21—C20—H20121.1
C5—C4—C3118.3 (5)C19—C20—H20121.1
C5—C4—H4120.8C20—C21—C22121.3 (5)
C3—C4—H4120.8C20—C21—H21119.4
C4—C5—C6122.0 (5)C22—C21—H21119.4
C4—C5—H5119.0C17—C22—C21120.3 (5)
C6—C5—H5119.0C17—C22—H22119.8
C5—C6—C1119.7 (5)C21—C22—H22119.8
C5—C6—H6120.1N3—C23—N4119.4 (3)
C1—C6—H6120.1N3—C23—C30126.0 (3)
N1—C7—N2121.4 (3)N4—C23—C30114.5 (3)
N1—C7—C14124.2 (3)C29—C24—C25120.0 (4)
N2—C7—C14114.2 (3)C29—C24—N4122.3 (4)
C13—C8—C9120.1 (3)C25—C24—N4117.5 (4)
C13—C8—N2117.8 (3)C24—C25—C26118.6 (5)
C9—C8—N2122.0 (3)C24—C25—H25120.7
C8—C9—C10118.1 (4)C26—C25—H25120.7
C8—C9—H9121.0C27—C26—C25121.1 (5)
C10—C9—H9121.0C27—C26—Cl3120.9 (5)
C11—C10—C9122.7 (5)C25—C26—Cl3117.9 (5)
C11—C10—Cl2B110.7 (7)C26—C27—C28119.7 (5)
C9—C10—Cl2B121.7 (5)C26—C27—H27120.2
C11—C10—Cl2A120.3 (4)C28—C27—H27120.2
C9—C10—Cl2A116.9 (5)C27—C28—C29121.0 (6)
C10—C11—C12118.0 (4)C27—C28—H28119.5
C10—C11—H11121.0C29—C28—H28119.5
C12—C11—H11121.0C24—C29—C28119.5 (6)
C13—C12—C11120.5 (5)C24—C29—H29120.2
C13—C12—H12119.8C28—C29—H29120.2
C11—C12—H12119.8C23—C30—C31114.6 (3)
C8—C13—C12120.7 (4)C23—C30—H30A108.6
C8—C13—H13119.7C31—C30—H30A108.6
C12—C13—H13119.7C23—C30—H30B108.6
C7—C14—C15110.9 (4)C31—C30—H30B108.6
C7—C14—H14A109.5H30A—C30—H30B107.6
C15—C14—H14A109.5C30—C31—C32111.9 (3)
C7—C14—H14B109.5C30—C31—H31A109.2
C15—C14—H14B109.5C32—C31—H31A109.2
H14A—C14—H14B108.1C30—C31—H31B109.2
C14—C15—C16107.3 (7)C32—C31—H31B109.2
C14—C15—H15A110.3H31A—C31—H31B107.9
C16—C15—H15A110.3C32ii—C32—C31112.6 (4)
C14—C15—H15B110.3C32ii—C32—H32A109.1
C16—C15—H15B110.3C31—C32—H32A109.1
H15A—C15—H15B108.5C32ii—C32—H32B109.1
C16i—C16—C15120.0 (11)C31—C32—H32B109.1
C16i—C16—H16A107.3H32A—C32—H32B107.8
C15—C16—H16A107.3C7—N1—C1120.8 (3)
C16i—C16—H16B107.3C7—N2—C8128.9 (3)
C15—C16—H16B107.3C7—N2—H2A115.6
H16A—C16—H16B106.9C8—N2—H2A115.6
C18—C17—C22118.2 (4)C23—N3—C17120.5 (3)
C18—C17—N3120.9 (4)C23—N4—C24125.8 (3)
C22—C17—N3120.8 (4)C23—N4—H4A117.1
C17—C18—C19119.2 (4)C24—N4—H4A117.1
C6—C1—C2—C30.6 (6)C19—C20—C21—C226.4 (10)
N1—C1—C2—C3173.3 (3)C18—C17—C22—C210.1 (8)
C1—C2—C3—C40.1 (6)N3—C17—C22—C21176.5 (5)
C1—C2—C3—Cl1179.4 (3)C20—C21—C22—C173.0 (10)
C2—C3—C4—C50.8 (7)C29—C24—C25—C260.6 (6)
Cl1—C3—C4—C5178.8 (4)N4—C24—C25—C26176.4 (4)
C3—C4—C5—C60.7 (8)C24—C25—C26—C270.7 (7)
C4—C5—C6—C10.0 (8)C24—C25—C26—Cl3178.5 (3)
C2—C1—C6—C50.6 (6)C25—C26—C27—C280.9 (9)
N1—C1—C6—C5173.3 (4)Cl3—C26—C27—C28178.3 (5)
C13—C8—C9—C100.1 (6)C26—C27—C28—C290.3 (10)
N2—C8—C9—C10178.0 (4)C25—C24—C29—C281.7 (8)
C8—C9—C10—C111.3 (8)N4—C24—C29—C28177.3 (5)
C8—C9—C10—Cl2B154.1 (14)C27—C28—C29—C241.6 (10)
C8—C9—C10—Cl2A175.5 (6)N3—C23—C30—C31128.1 (4)
C9—C10—C11—C121.9 (9)N4—C23—C30—C3155.7 (4)
Cl2B—C10—C11—C12157.4 (13)C23—C30—C31—C32175.8 (3)
Cl2A—C10—C11—C12174.8 (7)C30—C31—C32—C32ii174.4 (4)
C10—C11—C12—C131.1 (9)N2—C7—N1—C1172.6 (4)
C9—C8—C13—C120.7 (7)C14—C7—N1—C112.8 (6)
N2—C8—C13—C12178.8 (4)C2—C1—N1—C780.4 (5)
C11—C12—C13—C80.1 (8)C6—C1—N1—C7105.8 (5)
N1—C7—C14—C1587.0 (6)N1—C7—N2—C88.7 (6)
N2—C7—C14—C1588.0 (5)C14—C7—N2—C8176.2 (4)
C7—C14—C15—C16170.0 (5)C13—C8—N2—C7153.9 (4)
C14—C15—C16—C16i122.4 (4)C9—C8—N2—C728.1 (6)
C22—C17—C18—C190.4 (8)N4—C23—N3—C17172.8 (3)
N3—C17—C18—C19177.1 (5)C30—C23—N3—C1711.2 (6)
C17—C18—C19—C204.2 (9)C18—C17—N3—C23103.0 (5)
C17—C18—C19—Cl4A169.8 (5)C22—C17—N3—C2380.4 (6)
C17—C18—C19—Cl4B151.6 (8)N3—C23—N4—C2414.6 (6)
C18—C19—C20—C217.1 (10)C30—C23—N4—C24169.0 (3)
Cl4A—C19—C20—C21166.8 (6)C29—C24—N4—C2341.1 (6)
Cl4B—C19—C20—C21155.6 (9)C25—C24—N4—C23143.1 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.243.049 (4)157
N4—H4A···N1iii0.862.233.072 (4)168
Symmetry code: (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC32H30Cl4N4
Mr612.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)22.349 (3), 13.223 (2), 22.644 (3)
β (°) 108.79 (1)
V3)6335.1 (15)
Z8
Radiation typeCu Kα
µ (mm1)3.61
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.365, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
11300, 5657, 3976
Rint0.057
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.251, 1.13
No. of reflections5657
No. of parameters381
No. of restraints41
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.80

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.243.049 (4)157
N4—H4A···N1i0.862.233.072 (4)168
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds