organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-iodo­thio­phen-3-yl)methanone

aDepartment of Chemistry and Biology, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: hchengxf@126.com

(Received 10 February 2011; accepted 14 February 2011; online 23 February 2011)

In the title mol­ecule, C9H4I2OS2, the two five-membered rings form a dihedral angle of 64.2 (2)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane. The crystal packing exhibits short C⋯I contacts of 3.442 (5) Å between the mol­ecules of adjacent layers.

Related literature

For general background to the synthesis of thio­phene-based conjugated polymers, see: Cheng et al. (2009[Cheng, Y. J., Yang, S. H. & Hsu, C. S. (2009). Chem. Rev. 109, 5868-5923.]). For the synthesis of the title compound, see: Brzezinski & Reynolds (2002[Brzezinski, J. Z. & Reynolds, J. R. (2002). Synthesis, pp. 1053-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C9H4I2OS2

  • Mr = 446.04

  • Monoclinic, P 21 /n

  • a = 10.1908 (9) Å

  • b = 11.4832 (10) Å

  • c = 10.9083 (10) Å

  • β = 107.600 (1)°

  • V = 1216.77 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.48 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.474, Tmax = 0.610

  • 8022 measured reflections

  • 3003 independent reflections

  • 2541 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.11

  • 3003 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.51 3.233 (7) 135
C8—H8⋯O1ii 0.93 2.40 3.324 (6) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an important organic intermediate for the synthesis of conjugated polymers for organic solar cell applications (Brzezinski & Reynolds, 2002; Cheng et al., 2009). In (I) (Fig. 1), two five-membered rings form a dihedral angle of 64.2 (2)°. Weak intermolecular C—H···O hydrogen bonds link the molecules into layers parallel to ab plane. The crystal packing exhibits short C···I contacts of 3.442 (5) Å between the molecules from the neighbouring layers.

Related literature top

For general background to the synthesis of thiophene-based conjugated polymers, see: Cheng et al. (2009). For the synthesis of the title compound, see: Brzezinski & Reynolds (2002).

Experimental top

The title compound was synthesized according to the reported method by Brzezinski & Reynolds (2002). After being dissolved in the mixture of MeOH-Hexane (1:3) for seversal days, colourless crystals suitable for single-crystal X-ray diffraction were obtained.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
Bis(2-iodothiophen-3-yl)methanone top
Crystal data top
C9H4I2OS2F(000) = 816
Mr = 446.04Dx = 2.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2906 reflections
a = 10.1908 (9) Åθ = 2.4–26.9°
b = 11.4832 (10) ŵ = 5.48 mm1
c = 10.9083 (10) ÅT = 298 K
β = 107.600 (1)°Block, colourless
V = 1216.77 (19) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed tube2541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 137
Tmin = 0.474, Tmax = 0.610k = 1512
8022 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0342P)2]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C9H4I2OS2V = 1216.77 (19) Å3
Mr = 446.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1908 (9) ŵ = 5.48 mm1
b = 11.4832 (10) ÅT = 298 K
c = 10.9083 (10) Å0.16 × 0.12 × 0.10 mm
β = 107.600 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2541 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.610Rint = 0.084
8022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.11Δρmax = 1.08 e Å3
3003 reflectionsΔρmin = 0.67 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7428 (5)0.3871 (4)0.9017 (5)0.0377 (10)
C20.6198 (5)0.3657 (4)0.8086 (4)0.0328 (9)
C30.6258 (5)0.2588 (4)0.7431 (5)0.0392 (11)
H30.55150.22910.67830.047*
C40.7482 (6)0.2053 (5)0.7835 (5)0.0486 (13)
H40.76880.13590.74950.058*
C50.5029 (5)0.4469 (4)0.7705 (5)0.0349 (10)
C60.3643 (5)0.3977 (4)0.7066 (5)0.0350 (10)
C70.3112 (6)0.2950 (4)0.7492 (5)0.0438 (12)
H70.36280.24880.81660.053*
C80.1801 (6)0.2717 (5)0.6827 (6)0.0499 (13)
H80.13000.20930.69960.060*
C90.2680 (5)0.4481 (4)0.6055 (5)0.0372 (10)
I10.79608 (5)0.51950 (4)1.03536 (4)0.05838 (16)
I20.28839 (4)0.58784 (3)0.49276 (4)0.05046 (14)
O10.5191 (4)0.5512 (3)0.7870 (5)0.0569 (10)
S10.86152 (15)0.28059 (13)0.90534 (14)0.0517 (4)
S20.11662 (14)0.37150 (14)0.56270 (15)0.0512 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (3)0.035 (3)0.034 (2)0.002 (2)0.012 (2)0.0020 (19)
C20.036 (3)0.033 (2)0.030 (2)0.0025 (19)0.011 (2)0.0009 (18)
C30.043 (3)0.037 (3)0.034 (2)0.004 (2)0.006 (2)0.003 (2)
C40.059 (4)0.044 (3)0.042 (3)0.010 (2)0.012 (3)0.006 (2)
C50.034 (2)0.030 (2)0.043 (3)0.0002 (18)0.014 (2)0.000 (2)
C60.039 (3)0.028 (2)0.042 (2)0.0007 (18)0.018 (2)0.0017 (19)
C70.049 (3)0.036 (3)0.047 (3)0.002 (2)0.014 (2)0.006 (2)
C80.048 (3)0.040 (3)0.066 (4)0.011 (2)0.023 (3)0.003 (3)
C90.035 (3)0.035 (2)0.043 (3)0.0045 (19)0.014 (2)0.002 (2)
I10.0753 (3)0.0496 (2)0.0436 (2)0.01260 (18)0.0080 (2)0.01168 (16)
I20.0553 (3)0.0435 (2)0.0549 (2)0.00141 (15)0.02021 (19)0.01160 (16)
O10.041 (2)0.0288 (18)0.094 (3)0.0001 (15)0.011 (2)0.005 (2)
S10.0430 (8)0.0537 (9)0.0501 (8)0.0140 (6)0.0018 (6)0.0014 (6)
S20.0357 (7)0.0542 (8)0.0600 (8)0.0072 (6)0.0092 (6)0.0008 (7)
Geometric parameters (Å, º) top
C1—C21.376 (7)C5—C61.485 (7)
C1—S11.712 (5)C6—C91.364 (7)
C1—I12.063 (5)C6—C71.433 (6)
C2—C31.431 (7)C7—C81.339 (8)
C2—C51.471 (7)C7—H70.9300
C3—C41.339 (8)C8—S21.713 (6)
C3—H30.9300C8—H80.9300
C4—S11.709 (6)C9—S21.714 (5)
C4—H40.9300C9—I22.070 (5)
C5—O11.215 (6)
C2—C1—S1111.7 (4)C9—C6—C7111.2 (4)
C2—C1—I1129.8 (4)C9—C6—C5124.6 (4)
S1—C1—I1118.5 (3)C7—C6—C5124.1 (4)
C1—C2—C3110.8 (4)C8—C7—C6113.7 (5)
C1—C2—C5125.1 (4)C8—C7—H7123.2
C3—C2—C5123.8 (4)C6—C7—H7123.2
C4—C3—C2113.9 (5)C7—C8—S2111.4 (4)
C4—C3—H3123.1C7—C8—H8124.3
C2—C3—H3123.1S2—C8—H8124.3
C3—C4—S1111.6 (4)C6—C9—S2111.8 (4)
C3—C4—H4124.2C6—C9—I2129.3 (4)
S1—C4—H4124.2S2—C9—I2118.7 (3)
O1—C5—C2121.4 (4)C4—S1—C192.1 (3)
O1—C5—C6120.8 (4)C8—S2—C992.0 (3)
C2—C5—C6117.8 (4)
S1—C1—C2—C31.2 (5)C2—C5—C6—C744.7 (7)
I1—C1—C2—C3175.7 (4)C9—C6—C7—C80.8 (6)
S1—C1—C2—C5172.4 (4)C5—C6—C7—C8175.3 (5)
I1—C1—C2—C510.6 (7)C6—C7—C8—S21.6 (6)
C1—C2—C3—C41.6 (6)C7—C6—C9—S20.3 (5)
C5—C2—C3—C4172.2 (5)C5—C6—C9—S2176.4 (4)
C2—C3—C4—S11.2 (6)C7—C6—C9—I2173.7 (4)
C1—C2—C5—O124.2 (7)C5—C6—C9—I210.1 (7)
C3—C2—C5—O1148.6 (5)C3—C4—S1—C10.4 (5)
C1—C2—C5—C6158.0 (5)C2—C1—S1—C40.5 (4)
C3—C2—C5—C629.2 (7)I1—C1—S1—C4176.8 (3)
O1—C5—C6—C938.0 (7)C7—C8—S2—C91.5 (5)
C2—C5—C6—C9139.7 (5)C6—C9—S2—C81.0 (4)
O1—C5—C6—C7137.6 (5)I2—C9—S2—C8175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.513.233 (7)135
C8—H8···O1ii0.932.403.324 (6)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H4I2OS2
Mr446.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.1908 (9), 11.4832 (10), 10.9083 (10)
β (°) 107.600 (1)
V3)1216.77 (19)
Z4
Radiation typeMo Kα
µ (mm1)5.48
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.474, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
8022, 3003, 2541
Rint0.084
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.11
No. of reflections3003
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.67

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.513.233 (7)135
C8—H8···O1ii0.932.403.324 (6)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The author acknowledges financial support from Xiangfan University.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrzezinski, J. Z. & Reynolds, J. R. (2002). Synthesis, pp. 1053–1056.  Google Scholar
First citationCheng, Y. J., Yang, S. H. & Hsu, C. S. (2009). Chem. Rev. 109, 5868–5923.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds