organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(4-tert-Butyl­phen­yl)sulfon­yl]-1H-benzimidazole

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and bKara-Kalpak State University, Acad. Abdirov Str. 1, Nukus 742000, Uzbekistan
*Correspondence e-mail: abdireymovqudaybergen@mail.ru

(Received 10 February 2011; accepted 15 February 2011; online 26 February 2011)

The title compound, C17H18N2O2S, was synthesized by aryl­sulfonyl­ation of 1-hy­droxy­methyl-1H-benzimidazole in the presence of triethyl­amine. The benzimidazole and benzene rings form a dihedral angle of 84.1 (1)°. The tert-butyl group was treated as rotationally disordered over two orientations in a 0.51 (2):0.49 (2) ratio. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Koči et al. (2002[Koči, J., Klimešová, V., Waisser, K., Kaustová, J., Dahse, H. M. & Möllmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275-3278.]); Matsuno et al. (2000[Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.]); Garuti et al. (1999[Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525-2530.]). For related structures, see: Rashid et al. (2006[Rashid, N., Hasan, M., Yusof, N. M. & Yamin, B. M. (2006). Acta Cryst. E62, o5455-o5456.], 2007[Rashid, N., Hasan, M., Tahir, M. K., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o323-o324.]). For the aryl­sulfonyl­ation of benzimidazole derivatives, see: Abdireimov et al. (2010[Abdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Zh. & Shakhidoyatov, Kh. M. (2010). Chem. Heterocycl. Compd, 46, 941-946.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O2S

  • Mr = 314.39

  • Monoclinic, P 21 /n

  • a = 12.142 (2) Å

  • b = 8.8940 (18) Å

  • c = 15.324 (3) Å

  • β = 96.78 (3)°

  • V = 1643.3 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.82 mm−1

  • T = 302 K

  • 0.60 × 0.25 × 0.22 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.609, Tmax = 0.670

  • 2727 measured reflections

  • 2429 independent reflections

  • 1813 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 60.0°

  • 3 standard reflections every 60 min intensity decay: 5.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.150

  • S = 1.12

  • 2429 reflections

  • 234 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.93 2.56 3.430 (5) 156
C13—H13A⋯O1i 0.93 2.56 3.292 (5) 136
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives are important heteroaromatic compounds which have attracted great attention due to their biological and pharmaceutical activities (Koči et al., 2002; Matsuno et al., 2000; Garuti et al., 1999). The title compound has been obtained by the reaction of hydroxymethyl-1H-benzimidazole with 4-tert-butilbenzolsulfochlorid in the presence of triethylamine (Abdireimov et al., 2010; see also Fig. 1), where occurs deformylation of oxymethyl groups. The structure of the final product was investigated by 1H NMR-spectroscopy and X-ray diffraction.

The molecule (Fig. 2) consist of two flat fragments - benzimidazolic (N1/C2/N3/C3A–C7A) and benzolic (C8–C13) (r.m.s. deviation = 0.0082 and 0.0017 Å) ones, which form a dihedral angle of 84.1 (1)°. All bond lengths and angles are normal and comparable with those in related structures (Rashid et al., 2006, 2007). The tert-butyl group was rotationally disordered over two orientations with occupancies refined to 0.51 (2) and 0.49 (2), respectively.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [010].

Related literature top

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Koči et al. (2002); Matsuno et al. (2000); Garuti et al. (1999). For related structures, see: Rashid et al. (2006, 2007). For the arylsulfonylation of benzimidazole derivatives, see: Abdireimov et al. (2010).

Experimental top

To three-necked flask supplied with a mixer, containing solution of 2.32 g (10 mmol) 4-tert-butilbenzolsulfochloride in 15 ml acetone is added mixture of 1.48 g (10 mmol) 1-hydroxymethyl-1Hbenzimidazole and 1.01 g (10 mmol) triethylamine in 30 ml of acetone. The reaction mixture is mixed at room temperature for 4 h and acetone is evaporated. The rest of mass is washed by 100 ml of water and filtered, and recrystallized from benzine and received 2.61 g (76%) of title compound, m.p. 395–396 K.

The colorless crystals suitable for x-ray analysis have been grown from absolutized ethanol at room temperature.

1H NMR (400 MHz, CDCl3): 8.33 (1H,s, H-2), 7.85 (3H, m, H-4, 5, 6,), 7.71 (1H, dd, J2.1, J8.2 Hz H-7), 7.45 (2H, m, H-9, 13), 7.32 (2H, m, H-10, 12), 1.20 (9H, s, C(CH3)3).

Refinement top

The C15, C16 and C17 methyl carbon atoms of a tert-butyl group were treated as rotationally disordered over two orientations with site occupancy factors refined to 0.51 (2) and 0.49 (2), respectively. All H atoms were positioned geometrically and treated as riding atoms, with C—H distances of 0.96 Å for CH3, 0.93 Å for Car and included in the refinement in a riding motion approximation, with Uiso=1.2Ueq(C) or Uiso=1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction sequence.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. Minor parts of the disordered atoms were omitted for clarity.
1-[(4-tert-Butylphenyl)sulfonyl]-1H-benzimidazole top
Crystal data top
C17H18N2O2SF(000) = 664
Mr = 314.39Dx = 1.271 Mg m3
Monoclinic, P21/nMelting point: 395(1) K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 12.142 (2) ÅCell parameters from 14 reflections
b = 8.8940 (18) Åθ = 10–20°
c = 15.324 (3) ŵ = 1.82 mm1
β = 96.78 (3)°T = 302 K
V = 1643.3 (6) Å3Prism, colourless
Z = 40.60 × 0.25 × 0.22 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
1813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 60.0°, θmin = 4.4°
Scan width (ω) = 1.56 – 1.80, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.609, Tmax = 0.670l = 017
2727 measured reflections3 standard reflections every 60 min
2429 independent reflections intensity decay: 5.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.1618P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2429 reflectionsΔρmax = 0.15 e Å3
234 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (4)
Crystal data top
C17H18N2O2SV = 1643.3 (6) Å3
Mr = 314.39Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.142 (2) ŵ = 1.82 mm1
b = 8.8940 (18) ÅT = 302 K
c = 15.324 (3) Å0.60 × 0.25 × 0.22 mm
β = 96.78 (3)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
1813 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.609, Tmax = 0.670θmax = 60.0°
2727 measured reflections3 standard reflections every 60 min
2429 independent reflections intensity decay: 5.2%
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.12Δρmax = 0.15 e Å3
2429 reflectionsΔρmin = 0.27 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.15656 (9)0.56256 (13)0.30146 (7)0.0817 (4)
O10.2287 (3)0.6147 (4)0.24143 (18)0.1059 (11)
O20.0939 (3)0.4275 (3)0.2866 (2)0.1116 (11)
N10.2366 (2)0.5318 (4)0.39620 (19)0.0695 (8)
N30.2705 (3)0.4528 (4)0.5352 (3)0.0882 (11)
C20.2092 (4)0.4382 (5)0.4623 (3)0.0855 (12)
H2B0.15090.37000.45420.103*
C3A0.3453 (3)0.5650 (4)0.5199 (3)0.0678 (10)
C40.4313 (4)0.6232 (5)0.5767 (3)0.0857 (12)
H4A0.44600.58750.63400.103*
C50.4939 (4)0.7339 (6)0.5467 (4)0.0924 (13)
H5A0.55140.77570.58450.111*
C60.4741 (4)0.7862 (5)0.4611 (4)0.0907 (13)
H6A0.51890.86180.44250.109*
C70.3901 (3)0.7286 (4)0.4032 (3)0.0764 (11)
H7A0.37730.76250.34550.092*
C7A0.3259 (3)0.6188 (4)0.4344 (2)0.0621 (9)
C80.0676 (3)0.7078 (4)0.3232 (2)0.0593 (9)
C90.0313 (3)0.6758 (4)0.3528 (2)0.0639 (9)
H9A0.05070.57660.36270.077*
C100.1020 (3)0.7904 (4)0.3678 (2)0.0635 (9)
H10A0.16960.76740.38750.076*
C110.0760 (3)0.9392 (4)0.3545 (2)0.0542 (8)
C120.0251 (3)0.9681 (4)0.3244 (2)0.0673 (10)
H12A0.04501.06700.31460.081*
C130.0966 (3)0.8541 (4)0.3086 (2)0.0672 (10)
H13A0.16400.87590.28830.081*
C140.1562 (3)1.0652 (5)0.3703 (3)0.0709 (10)
C150.2610 (16)1.044 (3)0.3059 (11)0.131 (7)0.51 (2)
H15A0.31001.12750.31040.197*0.51 (2)
H15B0.29740.95260.31960.197*0.51 (2)
H15C0.24131.03820.24710.197*0.51 (2)
C160.113 (2)1.2215 (18)0.361 (3)0.234 (18)0.51 (2)
H16A0.04401.23260.39850.351*0.51 (2)
H16B0.16581.29260.37880.351*0.51 (2)
H16C0.10151.23940.30150.351*0.51 (2)
C170.1958 (18)1.047 (2)0.4597 (8)0.142 (10)0.51 (2)
H17A0.13301.04470.50410.214*0.51 (2)
H17B0.23670.95490.46130.214*0.51 (2)
H17C0.24281.13020.47060.214*0.51 (2)
C15A0.0948 (12)1.1855 (16)0.4249 (10)0.093 (5)0.49 (2)
H15D0.14691.25440.44540.140*0.49 (2)
H15E0.04701.23860.38990.140*0.49 (2)
H15F0.05111.14030.47430.140*0.49 (2)
C16A0.248 (2)1.013 (2)0.415 (3)0.233 (19)0.49 (2)
H16D0.29631.09620.42390.350*0.49 (2)
H16E0.22040.97060.47080.350*0.49 (2)
H16F0.28940.93800.37970.350*0.49 (2)
C17A0.192 (3)1.141 (3)0.2816 (11)0.150 (10)0.49 (2)
H17D0.24651.21740.28910.226*0.49 (2)
H17E0.22401.06760.24030.226*0.49 (2)
H17F0.12901.18650.26000.226*0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0854 (7)0.0894 (8)0.0698 (6)0.0210 (6)0.0072 (5)0.0219 (6)
O10.112 (2)0.145 (3)0.0660 (17)0.044 (2)0.0306 (16)0.0054 (18)
O20.116 (2)0.087 (2)0.126 (3)0.0087 (19)0.012 (2)0.0552 (19)
N10.0673 (19)0.069 (2)0.0716 (19)0.0118 (16)0.0044 (16)0.0041 (16)
N30.083 (2)0.086 (3)0.096 (3)0.001 (2)0.014 (2)0.026 (2)
C20.080 (3)0.067 (3)0.112 (4)0.000 (2)0.020 (3)0.016 (3)
C3A0.061 (2)0.068 (2)0.075 (2)0.0119 (19)0.0132 (19)0.008 (2)
C40.082 (3)0.095 (3)0.079 (3)0.012 (3)0.007 (2)0.006 (2)
C50.071 (3)0.094 (3)0.111 (4)0.004 (3)0.003 (3)0.015 (3)
C60.073 (3)0.075 (3)0.128 (4)0.003 (2)0.023 (3)0.006 (3)
C70.075 (3)0.070 (3)0.087 (3)0.012 (2)0.024 (2)0.019 (2)
C7A0.059 (2)0.059 (2)0.070 (2)0.0141 (18)0.0141 (17)0.0043 (18)
C80.057 (2)0.070 (2)0.0502 (19)0.0035 (18)0.0041 (15)0.0080 (17)
C90.060 (2)0.058 (2)0.071 (2)0.0046 (18)0.0000 (18)0.0060 (18)
C100.050 (2)0.071 (2)0.069 (2)0.0058 (18)0.0079 (16)0.0093 (19)
C110.0482 (18)0.062 (2)0.0502 (18)0.0012 (16)0.0024 (14)0.0048 (16)
C120.067 (2)0.059 (2)0.076 (2)0.0038 (19)0.0100 (19)0.0078 (19)
C130.058 (2)0.081 (3)0.065 (2)0.002 (2)0.0149 (17)0.005 (2)
C140.063 (2)0.074 (3)0.074 (2)0.011 (2)0.0002 (18)0.006 (2)
C150.100 (10)0.177 (19)0.106 (11)0.076 (11)0.037 (8)0.032 (11)
C160.17 (2)0.069 (9)0.49 (6)0.027 (10)0.14 (3)0.05 (2)
C170.20 (2)0.153 (18)0.071 (8)0.102 (16)0.023 (8)0.007 (8)
C15A0.095 (7)0.057 (8)0.122 (9)0.014 (7)0.010 (7)0.037 (7)
C16A0.157 (18)0.104 (11)0.48 (5)0.015 (13)0.23 (3)0.07 (2)
C17A0.18 (2)0.153 (18)0.105 (10)0.096 (16)0.050 (13)0.022 (11)
Geometric parameters (Å, º) top
S1—O11.421 (3)C12—C131.375 (5)
S1—O21.426 (3)C12—H12A0.9300
S1—N11.671 (3)C13—H13A0.9300
S1—C81.742 (3)C14—C16A1.455 (17)
N1—C21.381 (5)C14—C161.498 (17)
N1—C7A1.402 (5)C14—C15A1.501 (12)
N3—C21.274 (5)C14—C171.513 (15)
N3—C3A1.387 (5)C14—C151.527 (15)
C2—H2B0.9300C14—C17A1.535 (18)
C3A—C41.379 (5)C15—H15A0.9600
C3A—C7A1.389 (5)C15—H15B0.9600
C4—C51.357 (6)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.386 (6)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.369 (6)C17—H17A0.9600
C6—H6A0.9300C17—H17B0.9600
C7—C7A1.371 (5)C17—H17C0.9600
C7—H7A0.9300C15A—H15D0.9600
C8—C91.363 (5)C15A—H15E0.9600
C8—C131.373 (5)C15A—H15F0.9600
C9—C101.369 (5)C16A—H16D0.9600
C9—H9A0.9300C16A—H16E0.9600
C10—C111.381 (5)C16A—H16F0.9600
C10—H10A0.9300C17A—H17D0.9600
C11—C121.385 (5)C17A—H17E0.9600
C11—C141.523 (5)C17A—H17F0.9600
O1—S1—O2122.0 (2)C13—C12—H12A119.2
O1—S1—N1106.03 (18)C11—C12—H12A119.2
O2—S1—N1104.21 (19)C8—C13—C12119.4 (3)
O1—S1—C8109.00 (19)C8—C13—H13A120.3
O2—S1—C8108.89 (18)C12—C13—H13A120.3
N1—S1—C8105.39 (15)C16A—C14—C15A109.0 (13)
C2—N1—C7A105.5 (3)C16—C14—C17109.4 (14)
C2—N1—S1124.7 (3)C16A—C14—C11112.5 (8)
C7A—N1—S1127.9 (3)C16—C14—C11115.5 (8)
C2—N3—C3A104.6 (4)C15A—C14—C11109.1 (6)
N3—C2—N1114.5 (4)C17—C14—C11110.1 (7)
N3—C2—H2B122.7C16—C14—C15109.3 (12)
N1—C2—H2B122.7C17—C14—C15104.1 (10)
C4—C3A—N3128.7 (4)C11—C14—C15107.8 (7)
C4—C3A—C7A119.9 (4)C16A—C14—C17A113.7 (12)
N3—C3A—C7A111.4 (4)C15A—C14—C17A104.5 (10)
C5—C4—C3A118.1 (4)C11—C14—C17A107.7 (7)
C5—C4—H4A120.9C14—C15—H15A109.5
C3A—C4—H4A120.9C14—C15—H15B109.5
C4—C5—C6121.5 (4)C14—C15—H15C109.5
C4—C5—H5A119.2C14—C16—H16A109.5
C6—C5—H5A119.2C14—C16—H16B109.5
C7—C6—C5121.4 (4)C14—C16—H16C109.5
C7—C6—H6A119.3C14—C17—H17A109.5
C5—C6—H6A119.3C14—C17—H17B109.5
C6—C7—C7A116.8 (4)C14—C17—H17C109.5
C6—C7—H7A121.6C14—C15A—H15D109.5
C7A—C7—H7A121.6C14—C15A—H15E109.5
C7—C7A—C3A122.3 (4)H15D—C15A—H15E109.5
C7—C7A—N1133.7 (4)C14—C15A—H15F109.5
C3A—C7A—N1104.0 (3)H15D—C15A—H15F109.5
C9—C8—C13120.4 (3)H15E—C15A—H15F109.5
C9—C8—S1120.0 (3)C14—C16A—H16D109.5
C13—C8—S1119.7 (3)C14—C16A—H16E109.5
C8—C9—C10119.6 (3)H16D—C16A—H16E109.5
C8—C9—H9A120.2C14—C16A—H16F109.5
C10—C9—H9A120.2H16D—C16A—H16F109.5
C9—C10—C11122.0 (3)H16E—C16A—H16F109.5
C9—C10—H10A119.0C14—C17A—H17D109.5
C11—C10—H10A119.0C14—C17A—H17E109.5
C10—C11—C12117.0 (3)H17D—C17A—H17E109.5
C10—C11—C14121.3 (3)C14—C17A—H17F109.5
C12—C11—C14121.7 (3)H17D—C17A—H17F109.5
C13—C12—C11121.7 (3)H17E—C17A—H17F109.5
O1—S1—N1—C2158.3 (3)O2—S1—C8—C922.1 (3)
O2—S1—N1—C228.4 (4)N1—S1—C8—C989.2 (3)
C8—S1—N1—C286.2 (3)O1—S1—C8—C1321.3 (3)
O1—S1—N1—C7A39.6 (4)O2—S1—C8—C13156.6 (3)
O2—S1—N1—C7A169.5 (3)N1—S1—C8—C1392.1 (3)
C8—S1—N1—C7A75.9 (3)C13—C8—C9—C100.2 (5)
C3A—N3—C2—N10.6 (5)S1—C8—C9—C10178.5 (3)
C7A—N1—C2—N31.4 (5)C8—C9—C10—C110.5 (5)
S1—N1—C2—N3166.9 (3)C9—C10—C11—C120.5 (5)
C2—N3—C3A—C4178.8 (4)C9—C10—C11—C14179.2 (3)
C2—N3—C3A—C7A0.5 (5)C10—C11—C12—C130.2 (5)
N3—C3A—C4—C5179.9 (4)C14—C11—C12—C13178.8 (3)
C7A—C3A—C4—C50.8 (6)C9—C8—C13—C120.1 (5)
C3A—C4—C5—C61.2 (7)S1—C8—C13—C12178.8 (3)
C4—C5—C6—C70.3 (7)C11—C12—C13—C80.1 (5)
C5—C6—C7—C7A0.9 (6)C10—C11—C14—C16A10.7 (19)
C6—C7—C7A—C3A1.2 (5)C12—C11—C14—C16A170.7 (19)
C6—C7—C7A—N1178.1 (4)C10—C11—C14—C16174 (2)
C4—C3A—C7A—C70.4 (6)C12—C11—C14—C167 (2)
N3—C3A—C7A—C7179.0 (3)C10—C11—C14—C15A131.8 (8)
C4—C3A—C7A—N1178.0 (3)C12—C11—C14—C15A49.7 (8)
N3—C3A—C7A—N11.3 (4)C10—C11—C14—C1749.9 (10)
C2—N1—C7A—C7178.8 (4)C12—C11—C14—C17131.5 (10)
S1—N1—C7A—C716.3 (6)C10—C11—C14—C1563.0 (13)
C2—N1—C7A—C3A1.6 (4)C12—C11—C14—C15115.6 (13)
S1—N1—C7A—C3A166.4 (3)C10—C11—C14—C17A115.3 (15)
O1—S1—C8—C9157.3 (3)C12—C11—C14—C17A63.2 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.563.430 (5)156
C13—H13A···O1i0.932.563.292 (5)136
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O2S
Mr314.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)302
a, b, c (Å)12.142 (2), 8.8940 (18), 15.324 (3)
β (°) 96.78 (3)
V3)1643.3 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.82
Crystal size (mm)0.60 × 0.25 × 0.22
Data collection
DiffractometerStoe Stadi-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.609, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
2727, 2429, 1813
Rint0.044
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.150, 1.12
No. of reflections2429
No. of parameters234
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.27

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.5583.430 (5)156
C13—H13A···O1i0.932.5603.292 (5)136
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant Nos. FA-F3-T045 & FA-A6-T114).

References

First citationAbdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Zh. & Shakhidoyatov, Kh. M. (2010). Chem. Heterocycl. Compd, 46, 941–946.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaruti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525–2530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoči, J., Klimešová, V., Waisser, K., Kaustová, J., Dahse, H. M. & Möllmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275–3278.  Web of Science PubMed Google Scholar
First citationMatsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778–1781.  CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRashid, N., Hasan, M., Tahir, M. K., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o323–o324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRashid, N., Hasan, M., Yusof, N. M. & Yamin, B. M. (2006). Acta Cryst. E62, o5455–o5456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds