organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(5-phenyl-1,3,4-thia­diazol-2-yl)sulfan­yl]butane

aSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China, and bSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 14 February 2011; accepted 17 February 2011; online 23 February 2011)

The asymmetric unit of the title compound, C20H18N4S4, contains one half-mol­ecule situated on a twofold rotation axis, in which the thia­diazole and phenyl rings are twisted by 7.2 (3)°. In the crystal, weak inter­molecular C—H⋯π inter­actions link the mol­ecules into layers parallel to (103).

Related literature

For the biological activity of 1,3,4-triazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For the crystal structure of bis­(5-phenyl-1,3,4-thia­diazol-2-ylsulfan­yl)meth­ane, see: Wang et al. (2010[Wang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4S4

  • Mr = 442.62

  • Monoclinic, P 21 /c

  • a = 5.7976 (7) Å

  • b = 13.4393 (14) Å

  • c = 12.9784 (12) Å

  • β = 99.120 (7)°

  • V = 998.44 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.908, Tmax = 0.953

  • 9992 measured reflections

  • 2384 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.06

  • 2384 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9BCgi 0.99 2.70 3.540 (2) 144
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives exhibit a wide spectrum of biological activities (Nakagawa et al., 1996; Wang et al., 1999). Recently, we have published the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane (Wang et al., 2010). Herewith we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the molecule is situated on a twofold rotational axis so asymmetric unit contains a half of the molecule. The dihedral angle between the thiadiazole and the attached benzene rings is 7.2 (3)° indicating that two rings are almost parallel. As a result of π-π conjugation, the Csp2-S bond [S2—C8 = 1.742 (2) Å] is significantly shorter than the Csp3-S bond [S2—C9 = 1.813 (2) Å].

In the crystal structure, weak intermolecular C—H···π interactions (Table 1) link molecules into layers parallel to (103) plane.

Related literature top

For the biological activity of 1,3,4-triazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For the crystal structure of bis(5-phenyl-1,3,4-thiadiazol-2-ylsulfanyl)methane, see: Wang et al. (2010).

Experimental top

A suspension of 5-diphenyl-1,3,4-thiadiazol-2-thiol (2.0 mmol) and 1,1-dibromobutane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 85% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme [symmetry code: (A)-x + 1, -y + 1, -z]. Displacement ellipsoids are drawn at the 85% probability level.
1,4-Bis[(5-phenyl-1,3,4-thiadiazol-2-yl)sulfanyl]butane top
Crystal data top
C20H18N4S4F(000) = 460
Mr = 442.62Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3630 reflections
a = 5.7976 (7) Åθ = 1.5–27.9°
b = 13.4393 (14) ŵ = 0.49 mm1
c = 12.9784 (12) ÅT = 113 K
β = 99.120 (7)°Prism, colorless
V = 998.44 (18) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2384 independent reflections
Radiation source: rotating anode1870 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.038
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.2°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1717
Tmin = 0.908, Tmax = 0.953l = 1516
9992 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H18N4S4V = 998.44 (18) Å3
Mr = 442.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.7976 (7) ŵ = 0.49 mm1
b = 13.4393 (14) ÅT = 113 K
c = 12.9784 (12) Å0.20 × 0.18 × 0.10 mm
β = 99.120 (7)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2384 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1870 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.953Rint = 0.038
9992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
2384 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.18924 (6)0.48167 (3)0.35236 (3)0.01929 (12)
S20.94277 (7)0.60479 (3)0.17655 (3)0.02206 (13)
N10.8027 (2)0.39565 (9)0.36814 (10)0.0221 (3)
N20.7508 (2)0.46308 (10)0.28684 (10)0.0206 (3)
C11.3577 (3)0.34573 (11)0.54385 (12)0.0210 (3)
H11.45060.39550.51850.025*
C21.4532 (3)0.28628 (12)0.62747 (12)0.0213 (3)
H21.60990.29690.66010.026*
C31.3224 (3)0.21206 (12)0.66341 (12)0.0237 (4)
H31.38890.17100.71990.028*
C41.0921 (3)0.19787 (12)0.61620 (13)0.0259 (4)
H41.00130.14690.64090.031*
C50.9936 (3)0.25738 (12)0.53341 (12)0.0216 (3)
H50.83630.24690.50150.026*
C61.1262 (3)0.33270 (11)0.49711 (11)0.0173 (3)
C71.0225 (3)0.39663 (11)0.40992 (12)0.0171 (3)
C80.9342 (3)0.51325 (11)0.27088 (12)0.0175 (3)
C90.6507 (3)0.59299 (11)0.10328 (12)0.0211 (3)
H9A0.53730.58950.15270.025*
H9B0.61430.65310.05970.025*
C100.6215 (2)0.50122 (11)0.03322 (12)0.0205 (3)
H10A0.64450.44050.07690.025*
H10B0.74190.50180.01300.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01581 (19)0.0215 (2)0.0199 (2)0.00349 (15)0.00081 (16)0.00081 (15)
S20.0213 (2)0.0229 (2)0.0209 (2)0.00350 (16)0.00005 (17)0.00217 (16)
N10.0185 (7)0.0276 (7)0.0199 (7)0.0024 (6)0.0025 (6)0.0024 (6)
N20.0171 (6)0.0260 (7)0.0185 (7)0.0008 (6)0.0021 (5)0.0017 (5)
C10.0198 (8)0.0196 (8)0.0232 (9)0.0048 (6)0.0025 (7)0.0012 (6)
C20.0160 (7)0.0247 (8)0.0224 (9)0.0007 (6)0.0003 (6)0.0022 (7)
C30.0249 (8)0.0251 (9)0.0208 (8)0.0021 (7)0.0027 (7)0.0039 (7)
C40.0235 (8)0.0267 (9)0.0286 (9)0.0040 (7)0.0072 (7)0.0057 (7)
C50.0155 (7)0.0267 (8)0.0223 (9)0.0040 (6)0.0025 (6)0.0008 (7)
C60.0189 (7)0.0175 (7)0.0159 (8)0.0003 (6)0.0041 (6)0.0036 (6)
C70.0168 (7)0.0184 (7)0.0169 (8)0.0024 (6)0.0052 (6)0.0038 (6)
C80.0172 (7)0.0208 (8)0.0140 (8)0.0004 (6)0.0010 (6)0.0040 (6)
C90.0194 (8)0.0221 (8)0.0207 (9)0.0017 (6)0.0008 (7)0.0015 (6)
C100.0184 (8)0.0224 (8)0.0194 (8)0.0023 (6)0.0007 (6)0.0003 (6)
Geometric parameters (Å, º) top
S1—C81.7289 (15)C3—H30.9500
S1—C71.7400 (15)C4—C51.388 (2)
S2—C81.7417 (16)C4—H40.9500
S2—C91.8126 (15)C5—C61.397 (2)
N1—C71.303 (2)C5—H50.9500
N1—N21.3872 (17)C6—C71.471 (2)
N2—C81.303 (2)C9—C101.526 (2)
C1—C21.390 (2)C9—H9A0.9900
C1—C61.393 (2)C9—H9B0.9900
C1—H10.9500C10—C10i1.531 (3)
C2—C31.379 (2)C10—H10A0.9900
C2—H20.9500C10—H10B0.9900
C3—C41.391 (2)
C8—S1—C786.82 (7)C1—C6—C7120.63 (14)
C8—S2—C9100.29 (7)C5—C6—C7120.18 (13)
C7—N1—N2112.95 (13)N1—C7—C6124.58 (14)
C8—N2—N1112.01 (12)N1—C7—S1113.64 (12)
C2—C1—C6120.32 (15)C6—C7—S1121.78 (11)
C2—C1—H1119.8N2—C8—S1114.58 (12)
C6—C1—H1119.8N2—C8—S2126.30 (12)
C3—C2—C1120.49 (14)S1—C8—S2119.11 (9)
C3—C2—H2119.8C10—C9—S2112.94 (11)
C1—C2—H2119.8C10—C9—H9A109.0
C2—C3—C4119.44 (15)S2—C9—H9A109.0
C2—C3—H3120.3C10—C9—H9B109.0
C4—C3—H3120.3S2—C9—H9B109.0
C5—C4—C3120.70 (15)H9A—C9—H9B107.8
C5—C4—H4119.6C9—C10—C10i111.00 (16)
C3—C4—H4119.6C9—C10—H10A109.4
C4—C5—C6119.84 (15)C10i—C10—H10A109.4
C4—C5—H5120.1C9—C10—H10B109.4
C6—C5—H5120.1C10i—C10—H10B109.4
C1—C6—C5119.19 (14)H10A—C10—H10B108.0
C7—N1—N2—C80.54 (19)C1—C6—C7—S16.9 (2)
C6—C1—C2—C31.7 (2)C5—C6—C7—S1172.53 (12)
C1—C2—C3—C40.9 (2)C8—S1—C7—N10.48 (12)
C2—C3—C4—C50.2 (3)C8—S1—C7—C6179.80 (13)
C3—C4—C5—C60.2 (3)N1—N2—C8—S10.93 (17)
C2—C1—C6—C51.8 (2)N1—N2—C8—S2179.93 (11)
C2—C1—C6—C7178.80 (14)C7—S1—C8—N20.81 (13)
C4—C5—C6—C11.1 (2)C7—S1—C8—S2179.98 (10)
C4—C5—C6—C7179.52 (15)C9—S2—C8—N27.85 (16)
N2—N1—C7—C6179.79 (13)C9—S2—C8—S1171.26 (9)
N2—N1—C7—S10.08 (17)C8—S2—C9—C1075.00 (13)
C1—C6—C7—N1173.44 (15)S2—C9—C10—C10i175.61 (14)
C5—C6—C7—N17.2 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cgii0.992.703.540 (2)144
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N4S4
Mr442.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.7976 (7), 13.4393 (14), 12.9784 (12)
β (°) 99.120 (7)
V3)998.44 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.908, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
9992, 2384, 1870
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.06
No. of reflections2384
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cgi0.992.703.540 (2)144
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the support of the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (grant No. 20071103).

References

First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, H., Gao, Y. & Wang, W. (2010). Acta Cryst. E66, o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds