organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Nitro-1-nonyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, dDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA, and eDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
*Correspondence e-mail: kandri_rodi@yahoo.fr

(Received 17 January 2011; accepted 15 February 2011; online 19 February 2011)

In the title mol­ecule, C16H23N3O3, the dihedral angle between the benzimidazole and nitro group planes is 5.34 (9)° and the dihedral angle between the benzimidazole and aliphatic chain mean planes is 73.23 (5)°. The C—C—C—C torsion angles (about [\pm]176°) of the nonyl group indicate an all-anti­periplanar conformation. In the crystal, adjacent mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers. These mol­ecules are further connected through C—H⋯O inter­actions, building tapes parallel to ([\overline1]22).

Related literature

For background to the pharmacological and biochemical properties of benzimidazolo­nes, see: Gbadamassi et al. (1988[Gbadamassi, M., Barascut, J. L., Imbach, J. L. & Gayral, P. (1988). Eur. J. Med. Chem. 23, 225-232.]); Singh et al. (2000[Singh, S., Syme, C. A., Singh, A. K., Devor, D. C. & Bridges, R. J. (2000). J. Pharmacol. Exp. Ther. 296, 600-611.]); Derand et al. (2003[Derand, R., Bulteau-Pignoux, L. & Becq, F. (2003). J. Membr. Biol. 194, 109-117.]); Badarau et al. (2009[Badarau, E., Suzenet, F., Bojarski, A. J., Adriana-Luminiţa Fînaru, A. L. & Guillaumet, G. (2009). Bioorg. Med. Chem. Lett. 19, 1600-1603.]). For similar structures, see: Saber et al. (2010[Saber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1409.]); Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23N3O3

  • Mr = 305.37

  • Triclinic, [P \overline 1]

  • a = 5.483 (1) Å

  • b = 10.2092 (15) Å

  • c = 14.746 (3) Å

  • α = 74.275 (9)°

  • β = 79.727 (6)°

  • γ = 83.410 (8)°

  • V = 779.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.35 × 0.27 × 0.22 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 21087 measured reflections

  • 6349 independent reflections

  • 5183 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.03

  • 6349 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.89 2.7651 (9) 170
C6—H6⋯O3ii 0.95 2.58 3.3139 (11) 134
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazoles are useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest (Gbadamassi et al., 1988). Benzimidazolone and its derivatives are also an important class of bioactive molecules in the field of drugs and pharmaceuticals (Derand et al., 2003). They found potential applications in diverse therapeutic areas including, anti-hypertensives and anti-virals (Badarau et al., 2009; Singh et al., 2000). The structural studies of benzimidazolone, linked to an isopropenyl and nonyl group respectively, have been published by Saber et al. (2010)and Ouzidan et al. (2011).

The 5-nitro-1-nonyl-1H-benzimidazol-2(3H)-one molecule structure is built up from two fused six-and five-membered rings linked to C9H19 chain as shown in Fig.1. The aliphatic chain has all-antiperiplanar (all-trans) conformation. Furthermore, the fused-ring system and the nitro group are almost planar, with a maximum deviation of 0.0414 (8) Å and 0.0250 (7) Å for C4 and N1 respectively. The dihedral angle between the two rings and nitro group planes is 5.34 (9)°. The torsion angles C1 N2 C8 C9 and C13 C14 C15 C16 are 113.66 (8)° and 177.26 (7)° respectively.

In the crystal, adjacent molecules are linked by pairs of N—H···O hydrogen bonds into inversion dimers. These molecules are further connected through C—H···O hydrogen bonds into a tape parallel to the (-1 2 2) plane, as schown in Fig. 2 and Table 1.

Related literature top

For background to the pharmacological and biochemical properties of benzimidazolones, see: Gbadamassi et al. (1988); Singh et al. (2000); Derand et al. (2003); Badarau et al. (2009). For similar structures, see: Saber et al. (2010); Ouzidan et al. (2011).

Experimental top

To 5-nitro-1H-benzoimidazol-2(3H)-one (0.2 g, 1.1 mmol), potassium carbonate (0.30 g, 2.2 mmol) and tetra-n-butylammonium bromide (0.07 g, 0.2 mmol) in DMF (15 ml) was added 1-bromononane (0.43 ml, 2.2 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless needle-shaped crystals were isolated when the solvent was allowed to evaporate [(m.p. 392–394 K (ethanol)].

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.99 Å, 0.98, Å, 0.95 Å, and 0.88 Å for –CH2–, –CH3, aromatic CH and NH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene, N) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial packing view of the title compound, showing tapes in the (-1 2 2) plane, built up from molecules linked through N—H···O hydrogen bonds and intermolecular C–H···O contacts (dashed lines).
5-Nitro-1-nonyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C16H23N3O3Z = 2
Mr = 305.37F(000) = 328
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.483 (1) ÅCell parameters from 5537 reflections
b = 10.2092 (15) Åθ = 2.5–34.9°
c = 14.746 (3) ŵ = 0.09 mm1
α = 74.275 (9)°T = 90 K
β = 79.727 (6)°Needle, colourless
γ = 83.410 (8)°0.35 × 0.27 × 0.22 mm
V = 779.9 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
5183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 34.9°, θmin = 2.8°
ω and ϕ scansh = 88
21087 measured reflectionsk = 1516
6349 independent reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1462P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6349 reflectionsΔρmax = 0.45 e Å3
201 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (5)
Crystal data top
C16H23N3O3γ = 83.410 (8)°
Mr = 305.37V = 779.9 (2) Å3
Triclinic, P1Z = 2
a = 5.483 (1) ÅMo Kα radiation
b = 10.2092 (15) ŵ = 0.09 mm1
c = 14.746 (3) ÅT = 90 K
α = 74.275 (9)°0.35 × 0.27 × 0.22 mm
β = 79.727 (6)°
Data collection top
Nonius KappaCCD
diffractometer
5183 reflections with I > 2σ(I)
21087 measured reflectionsRint = 0.023
6349 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
6349 reflectionsΔρmin = 0.28 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92795 (11)1.07035 (6)0.37556 (4)0.01618 (12)
O20.40529 (12)0.45052 (6)0.71989 (4)0.02109 (13)
O30.12666 (12)0.41865 (6)0.64166 (5)0.02143 (13)
N10.78463 (12)0.88673 (7)0.50035 (5)0.01369 (12)
H10.87510.89040.54310.016*
N20.61923 (12)0.93607 (7)0.36748 (4)0.01292 (12)
N30.29292 (13)0.48382 (7)0.65097 (5)0.01591 (13)
C10.79248 (13)0.97452 (8)0.41127 (5)0.01294 (13)
C20.50448 (13)0.82444 (7)0.42883 (5)0.01255 (13)
C30.61268 (13)0.79137 (8)0.51286 (5)0.01240 (13)
C40.54726 (13)0.68061 (8)0.58770 (5)0.01379 (13)
H40.62290.65650.64370.017*
C50.36219 (13)0.60623 (7)0.57568 (5)0.01384 (13)
C60.24677 (14)0.63920 (8)0.49481 (6)0.01500 (13)
H60.11930.58600.49120.018*
C70.31799 (14)0.75013 (8)0.41917 (5)0.01431 (13)
H70.24210.77400.36320.017*
C80.56136 (14)1.00911 (8)0.27295 (5)0.01453 (13)
H8A0.64751.09480.25080.017*
H8B0.38041.03380.27780.017*
C90.63787 (14)0.92606 (8)0.19926 (5)0.01496 (13)
H9A0.57140.97580.14020.018*
H9B0.55890.83820.22370.018*
C100.91760 (14)0.89612 (8)0.17380 (5)0.01536 (14)
H10A0.98480.83970.23110.018*
H10B1.00050.98290.15220.018*
C110.97314 (15)0.82089 (8)0.09493 (6)0.01648 (14)
H11A0.89590.73250.11860.020*
H11B0.89360.87510.04000.020*
C121.24889 (15)0.79376 (8)0.06003 (6)0.01714 (14)
H12A1.32810.73490.11370.021*
H12B1.32930.88130.03860.021*
C131.29159 (14)0.72462 (8)0.02204 (6)0.01650 (14)
H13A1.21880.63490.00100.020*
H13B1.20180.78090.07350.020*
C141.56428 (15)0.70296 (8)0.06374 (6)0.01707 (14)
H14A1.63460.79280.09180.020*
H14B1.65750.65220.01180.020*
C151.59873 (15)0.62433 (9)0.14015 (6)0.01812 (15)
H15A1.53500.53300.11110.022*
H15B1.49810.67280.19030.022*
C161.86819 (17)0.60708 (10)0.18635 (7)0.02506 (18)
H16A1.92710.69670.22150.038*
H16B1.87950.54920.23040.038*
H16C1.97120.56430.13680.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (2)0.0163 (3)0.0153 (2)0.00631 (19)0.00140 (19)0.0029 (2)
O20.0265 (3)0.0195 (3)0.0162 (3)0.0041 (2)0.0049 (2)0.0008 (2)
O30.0224 (3)0.0188 (3)0.0235 (3)0.0096 (2)0.0006 (2)0.0048 (2)
N10.0147 (3)0.0147 (3)0.0125 (3)0.0040 (2)0.0026 (2)0.0035 (2)
N20.0138 (3)0.0137 (3)0.0117 (3)0.0029 (2)0.0018 (2)0.0032 (2)
N30.0177 (3)0.0143 (3)0.0153 (3)0.0031 (2)0.0006 (2)0.0044 (2)
C10.0130 (3)0.0138 (3)0.0126 (3)0.0014 (2)0.0010 (2)0.0048 (2)
C20.0120 (3)0.0132 (3)0.0126 (3)0.0014 (2)0.0005 (2)0.0043 (2)
C30.0119 (3)0.0133 (3)0.0130 (3)0.0020 (2)0.0009 (2)0.0052 (2)
C40.0143 (3)0.0145 (3)0.0128 (3)0.0020 (2)0.0011 (2)0.0041 (2)
C50.0147 (3)0.0123 (3)0.0141 (3)0.0024 (2)0.0000 (2)0.0034 (2)
C60.0140 (3)0.0150 (3)0.0168 (3)0.0028 (2)0.0017 (2)0.0051 (3)
C70.0132 (3)0.0159 (3)0.0148 (3)0.0020 (2)0.0030 (2)0.0046 (2)
C80.0158 (3)0.0147 (3)0.0125 (3)0.0003 (2)0.0026 (2)0.0028 (2)
C90.0157 (3)0.0172 (3)0.0125 (3)0.0017 (2)0.0026 (2)0.0043 (2)
C100.0163 (3)0.0171 (3)0.0135 (3)0.0011 (2)0.0024 (2)0.0053 (3)
C110.0173 (3)0.0189 (3)0.0142 (3)0.0006 (3)0.0017 (2)0.0065 (3)
C120.0179 (3)0.0196 (4)0.0153 (3)0.0003 (3)0.0029 (3)0.0071 (3)
C130.0168 (3)0.0184 (3)0.0150 (3)0.0001 (3)0.0020 (2)0.0063 (3)
C140.0173 (3)0.0181 (3)0.0157 (3)0.0004 (3)0.0015 (3)0.0053 (3)
C150.0200 (3)0.0183 (4)0.0157 (3)0.0012 (3)0.0015 (3)0.0056 (3)
C160.0217 (4)0.0302 (5)0.0221 (4)0.0022 (3)0.0013 (3)0.0094 (3)
Geometric parameters (Å, º) top
O1—C11.2387 (9)C9—H9A0.9900
O2—N31.2313 (9)C9—H9B0.9900
O3—N31.2352 (9)C10—C111.5297 (11)
N1—C11.3715 (10)C10—H10A0.9900
N1—C31.3864 (9)C10—H10B0.9900
N1—H10.8800C11—C121.5268 (11)
N2—C11.3838 (10)C11—H11A0.9900
N2—C21.3842 (10)C11—H11B0.9900
N2—C81.4628 (10)C12—C131.5303 (11)
N3—C51.4646 (10)C12—H12A0.9900
C2—C71.3893 (10)C12—H12B0.9900
C2—C31.4109 (10)C13—C141.5272 (11)
C3—C41.3787 (11)C13—H13A0.9900
C4—C51.3970 (11)C13—H13B0.9900
C4—H40.9500C14—C151.5263 (11)
C5—C61.3924 (11)C14—H14A0.9900
C6—C71.3930 (11)C14—H14B0.9900
C6—H60.9500C15—C161.5246 (12)
C7—H70.9500C15—H15A0.9900
C8—C91.5266 (11)C15—H15B0.9900
C8—H8A0.9900C16—H16A0.9800
C8—H8B0.9900C16—H16B0.9800
C9—C101.5284 (11)C16—H16C0.9800
C1—N1—C3109.78 (6)C9—C10—C11110.76 (6)
C1—N1—H1125.1C9—C10—H10A109.5
C3—N1—H1125.1C11—C10—H10A109.5
C1—N2—C2109.39 (6)C9—C10—H10B109.5
C1—N2—C8124.01 (6)C11—C10—H10B109.5
C2—N2—C8126.52 (6)H10A—C10—H10B108.1
O2—N3—O3123.41 (7)C12—C11—C10114.85 (6)
O2—N3—C5118.20 (7)C12—C11—H11A108.6
O3—N3—C5118.39 (7)C10—C11—H11A108.6
O1—C1—N1127.21 (7)C12—C11—H11B108.6
O1—C1—N2125.74 (7)C10—C11—H11B108.6
N1—C1—N2107.04 (6)H11A—C11—H11B107.5
N2—C2—C7131.59 (7)C11—C12—C13112.22 (6)
N2—C2—C3106.99 (6)C11—C12—H12A109.2
C7—C2—C3121.42 (7)C13—C12—H12A109.2
C4—C3—N1131.24 (7)C11—C12—H12B109.2
C4—C3—C2121.98 (7)C13—C12—H12B109.2
N1—C3—C2106.77 (6)H12A—C12—H12B107.9
C3—C4—C5115.49 (7)C14—C13—C12114.38 (7)
C3—C4—H4122.3C14—C13—H13A108.7
C5—C4—H4122.3C12—C13—H13A108.7
C6—C5—C4123.69 (7)C14—C13—H13B108.7
C6—C5—N3118.32 (7)C12—C13—H13B108.7
C4—C5—N3117.95 (7)H13A—C13—H13B107.6
C5—C6—C7120.08 (7)C15—C14—C13112.45 (7)
C5—C6—H6120.0C15—C14—H14A109.1
C7—C6—H6120.0C13—C14—H14A109.1
C2—C7—C6117.29 (7)C15—C14—H14B109.1
C2—C7—H7121.4C13—C14—H14B109.1
C6—C7—H7121.4H14A—C14—H14B107.8
N2—C8—C9113.04 (6)C16—C15—C14113.56 (7)
N2—C8—H8A109.0C16—C15—H15A108.9
C9—C8—H8A109.0C14—C15—H15A108.9
N2—C8—H8B109.0C16—C15—H15B108.9
C9—C8—H8B109.0C14—C15—H15B108.9
H8A—C8—H8B107.8H15A—C15—H15B107.7
C8—C9—C10115.31 (6)C15—C16—H16A109.5
C8—C9—H9A108.4C15—C16—H16B109.5
C10—C9—H9A108.4H16A—C16—H16B109.5
C8—C9—H9B108.4C15—C16—H16C109.5
C10—C9—H9B108.4H16A—C16—H16C109.5
H9A—C9—H9B107.5H16B—C16—H16C109.5
C3—N1—C1—O1178.59 (7)C3—C4—C5—N3177.28 (6)
C3—N1—C1—N21.29 (8)O2—N3—C5—C6175.91 (7)
C2—N2—C1—O1179.64 (7)O3—N3—C5—C63.41 (11)
C8—N2—C1—O13.45 (12)O2—N3—C5—C41.82 (10)
C2—N2—C1—N10.24 (8)O3—N3—C5—C4178.86 (7)
C8—N2—C1—N1176.67 (6)C4—C5—C6—C71.40 (12)
C1—N2—C2—C7178.96 (8)N3—C5—C6—C7176.19 (7)
C8—N2—C2—C72.15 (13)N2—C2—C7—C6178.47 (7)
C1—N2—C2—C30.87 (8)C3—C2—C7—C61.72 (11)
C8—N2—C2—C3177.68 (6)C5—C6—C7—C20.33 (11)
C1—N1—C3—C4176.91 (8)C1—N2—C8—C9113.65 (8)
C1—N1—C3—C21.82 (8)C2—N2—C8—C969.97 (9)
N2—C2—C3—C4177.25 (7)N2—C8—C9—C1066.44 (9)
C7—C2—C3—C42.90 (11)C8—C9—C10—C11176.26 (6)
N2—C2—C3—N11.62 (8)C9—C10—C11—C12176.47 (7)
C7—C2—C3—N1178.23 (7)C10—C11—C12—C13177.19 (7)
N1—C3—C4—C5179.65 (7)C11—C12—C13—C14176.46 (7)
C2—C3—C4—C51.79 (11)C12—C13—C14—C15175.71 (7)
C3—C4—C5—C60.32 (11)C13—C14—C15—C16177.26 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.892.7651 (9)170
C6—H6···O3ii0.952.583.3139 (11)134
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H23N3O3
Mr305.37
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)5.483 (1), 10.2092 (15), 14.746 (3)
α, β, γ (°)74.275 (9), 79.727 (6), 83.410 (8)
V3)779.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.27 × 0.22
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21087, 6349, 5183
Rint0.023
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.03
No. of reflections6349
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.28

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.892.7651 (9)170
C6—H6···O3ii0.952.583.3139 (11)134
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBadarau, E., Suzenet, F., Bojarski, A. J., Adriana-Luminiţa Fînaru, A. L. & Guillaumet, G. (2009). Bioorg. Med. Chem. Lett. 19, 1600–1603.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDerand, R., Bulteau-Pignoux, L. & Becq, F. (2003). J. Membr. Biol. 194, 109–117.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGbadamassi, M., Barascut, J. L., Imbach, J. L. & Gayral, P. (1988). Eur. J. Med. Chem. 23, 225–232.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Syme, C. A., Singh, A. K., Devor, D. C. & Bridges, R. J. (2000). J. Pharmacol. Exp. Ther. 296, 600–611.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds