organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(6-Chloro-2-methyl-4-phenyl­quinolin-3-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 February 2011; accepted 8 February 2011; online 12 February 2011)

Two independent mol­ecules comprise the asymmetric unit of the title chalcone, C25H17Cl2NO, and while each has an E configuration about the ethyl­ene double bond, they differ in the relative orientations of the carbonyl and ethyl­ene double bonds within the prop-2-en-1-one residues, i.e. anti and syn. For each mol­ecule, the benzene [dihedral angles = 71.04 (9) and 73.34 (12)°] and prop-2-en-1-one [C—C—C—O = 91.2 (2) and −119.1 (3)°] substituents are twisted out of the plane of the quinoline moiety to which they are attached. The crystal structure is stabilized by C—H⋯π and ππ [Cg(quinoline)⋯Cg(quinoline) = 3.7809 (12) and 3.8446 (11) Å] inter­actions.

Related literature

For background to chalcone chemistry, see: Roman (2004[Roman, G. (2004). Acta Chim. Slov. 51, 537-544.]). For related structures, see: Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]); Reddy et al. (2010[Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658-o659.]).

[Scheme 1]

Experimental

Crystal data
  • C25H17Cl2NO

  • Mr = 418.30

  • Triclinic, [P \overline 1]

  • a = 11.1704 (3) Å

  • b = 12.8497 (5) Å

  • c = 16.0591 (6) Å

  • α = 74.914 (3)°

  • β = 80.603 (3)°

  • γ = 70.789 (3)°

  • V = 2094.05 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.91 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.574, Tmax = 1.000

  • 14958 measured reflections

  • 8252 independent reflections

  • 7088 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.158

  • S = 1.03

  • 8252 reflections

  • 525 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C38—H38⋯Cg1i 0.93 2.93 3.458 (3) 117
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones and its analogs are valuable intermediates in organic synthesis and exhibit a multitude of biological activities. From a chemical point of view, an important feature of chalcones and their heteroanalogs is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts (Roman, 2004). The title compound, (I), was examined in continuation of our interest in the structural chemistry of chalcones (Prasath et al., 2010; Reddy et al., 2010).

Two independent molecules comprise the asymmetric unit of (I), one with an anti relationship between the carbonyl and ethylene double bonds, Fig. 1, and one with a syn relationship, Fig. 2. In each, the conformation about the ethylene bond [C18C19 = 1.319 (3) Å and C43C44 = 1.328 (3) Å] is E. For both molecules, the benzene ring is twisted out of the plane of the quinoline residue to which it is connected; the C6—C7—C11—C12 and C31—C32—C36—C37 torsion angles are -69.0 (2) and -107.1 (2) °, respectively. The prop-2-en-1-one substituents are also twisted out of the plane of the respective quinoline residues as seen in the values of the C7—C8—C17—O1 and C32—C33—C42—O2 torsion angles of 91.2 (2) and -119.1 (3) °, respectively. Within the prop-2-en-1-one substituents themselves, the terminal benzene rings are not co-planar with the C18—C19—C20—C21 and C43—C44—C45—C46 torsion angles being -159.6 (2) and -170.8 (2) °, respectively.

The molecules are stabilized in the crystal packing by a combination of C—H···π, ππ, and C—Cl···π interactions. The C—H···π contacts, Table 1, occur between the two molecules comprising the asymmetric unit. The ππ interactions occur between centrosymmetrically related quinoline rings belonging to like molecules [Cg(N1,C1,C6—C9)···Cg(C1—C6)ii = 3.8446 (11) ° for ii: 1 - x, 1 - y, -z; and Cg(N2,C26,C31—C34)···Cg(C26—C31)iii = 3.7809 (12) ° for iii: 1 - x, 1 - y, 1 - z]. The C—H···Cl contacts [C4—Cl1···Cg(C20—C25)iv = 3.6082 (13) Å and angle at Cl1 = 116.34 (7) ° for iv: -1 + x, y, z] also occur between like molecules. A view of the crystal packing is shown in Fig. 3.

Related literature top

For background to chalcone chemistry, see: Roman (2004). For related structures, see: Prasath et al. (2010); Reddy et al. (2010).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (3.1 g, 0.01 M) and 4-chlorobenzaldehyde (1.4 g, 0.01 M) and a catalytic amount of KOH in distilled ethanol (40 ml) was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured onto ice and neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether. Recrystallization was from acetone; Yield: 64% and m.pt: 397–399 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule of (I), i.e. the anti form, showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule of (I), i.e. the syn form, showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I). The C—H···π, ππ, and C—Cl···π interactions are shown as purple, orange and green dashed lines, respectively.
(2E)-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)- 3-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C25H17Cl2NOZ = 4
Mr = 418.30F(000) = 864
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 11.1704 (3) ÅCell parameters from 8901 reflections
b = 12.8497 (5) Åθ = 2.9–74.1°
c = 16.0591 (6) ŵ = 2.91 mm1
α = 74.914 (3)°T = 295 K
β = 80.603 (3)°Prism, colourless
γ = 70.789 (3)°0.30 × 0.30 × 0.10 mm
V = 2094.05 (13) Å3
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
8252 independent reflections
Radiation source: SuperNova (Cu) X-ray Source7088 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 2.9°
ω scansh = 1113
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1615
Tmin = 0.574, Tmax = 1.000l = 2019
14958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.4585P]
where P = (Fo2 + 2Fc2)/3
8252 reflections(Δ/σ)max = 0.001
525 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C25H17Cl2NOγ = 70.789 (3)°
Mr = 418.30V = 2094.05 (13) Å3
Triclinic, P1Z = 4
a = 11.1704 (3) ÅCu Kα radiation
b = 12.8497 (5) ŵ = 2.91 mm1
c = 16.0591 (6) ÅT = 295 K
α = 74.914 (3)°0.30 × 0.30 × 0.10 mm
β = 80.603 (3)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
8252 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
7088 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 1.000Rint = 0.026
14958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
8252 reflectionsΔρmin = 0.41 e Å3
525 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16358 (5)0.49560 (5)0.26030 (4)0.06920 (17)
Cl21.33991 (8)0.11218 (7)0.45986 (5)0.0924 (2)
O10.86575 (14)0.22234 (15)0.02125 (11)0.0691 (4)
N10.61911 (15)0.56418 (13)0.04091 (10)0.0501 (4)
C10.51604 (16)0.54394 (15)0.09308 (11)0.0443 (4)
C20.40157 (18)0.63350 (16)0.09149 (13)0.0512 (4)
H20.39860.70370.05540.061*
C30.29485 (18)0.61886 (17)0.14218 (14)0.0541 (4)
H30.21960.67830.14040.065*
C40.30038 (17)0.51310 (16)0.19691 (13)0.0501 (4)
C50.40840 (17)0.42366 (16)0.20038 (12)0.0486 (4)
H50.40920.35420.23700.058*
C60.51918 (16)0.43729 (14)0.14790 (11)0.0433 (4)
C70.63491 (17)0.34658 (15)0.14543 (12)0.0463 (4)
C80.73523 (17)0.36816 (16)0.08963 (12)0.0486 (4)
C90.72457 (17)0.47965 (17)0.03906 (13)0.0503 (4)
C100.8367 (2)0.5062 (2)0.01747 (17)0.0686 (6)
H10A0.80750.57460.06030.103*
H10B0.88150.44520.04560.103*
H10C0.89260.51590.01740.103*
C110.64371 (16)0.23274 (15)0.20244 (13)0.0485 (4)
C120.6432 (2)0.21729 (18)0.29087 (14)0.0595 (5)
H120.63810.27750.31460.071*
C130.6502 (2)0.11177 (19)0.34435 (16)0.0692 (6)
H130.65080.10120.40380.083*
C140.6564 (2)0.02285 (19)0.30963 (16)0.0675 (6)
H140.65970.04740.34580.081*
C150.6575 (2)0.03717 (19)0.22225 (17)0.0665 (6)
H150.66240.02340.19900.080*
C160.6514 (2)0.14203 (18)0.16806 (15)0.0584 (5)
H160.65240.15150.10860.070*
C170.85560 (18)0.27261 (18)0.07789 (13)0.0542 (4)
C180.95710 (19)0.2412 (2)0.13521 (15)0.0622 (5)
H181.03230.18670.12300.075*
C190.95068 (19)0.28387 (19)0.20273 (14)0.0601 (5)
H190.87710.34120.21270.072*
C201.0485 (2)0.24950 (19)0.26344 (14)0.0597 (5)
C211.0179 (2)0.2730 (2)0.34513 (15)0.0667 (6)
H210.93570.31580.35980.080*
C221.1072 (3)0.2339 (2)0.40532 (16)0.0718 (6)
H221.08530.24960.46010.086*
C231.2288 (2)0.1717 (2)0.38295 (15)0.0657 (5)
C241.2642 (2)0.1516 (3)0.30134 (17)0.0769 (7)
H241.34770.11230.28620.092*
C251.1743 (2)0.1906 (2)0.24211 (16)0.0747 (7)
H251.19810.17720.18670.090*
Cl30.90535 (6)0.58126 (7)0.40484 (4)0.0849 (2)
Cl40.90415 (7)0.25246 (7)1.15298 (5)0.0979 (3)
O20.4659 (2)0.17598 (16)0.71587 (14)0.0901 (6)
N20.45355 (15)0.52142 (13)0.63374 (11)0.0513 (4)
C260.56090 (18)0.53029 (15)0.58190 (12)0.0473 (4)
C270.5587 (2)0.63632 (17)0.52686 (14)0.0595 (5)
H270.48520.69720.52740.071*
C280.6626 (2)0.65091 (18)0.47297 (14)0.0641 (5)
H280.65970.72080.43650.077*
C290.7733 (2)0.55961 (19)0.47328 (13)0.0578 (5)
C300.78037 (19)0.45574 (18)0.52438 (13)0.0530 (4)
H300.85510.39630.52280.064*
C310.67341 (17)0.43863 (15)0.57993 (11)0.0452 (4)
C320.67093 (17)0.33154 (15)0.63337 (12)0.0474 (4)
C330.55979 (18)0.32275 (16)0.68166 (12)0.0488 (4)
C340.45213 (18)0.42134 (17)0.68166 (12)0.0500 (4)
C350.3321 (2)0.4172 (2)0.73827 (16)0.0666 (6)
H35A0.27470.49240.73400.100*
H35B0.35190.38480.79720.100*
H35C0.29290.37170.71980.100*
C360.78570 (19)0.23100 (16)0.63245 (14)0.0545 (4)
C370.7881 (2)0.1469 (2)0.5930 (2)0.0778 (7)
H370.71750.15240.56650.093*
C380.8959 (3)0.0539 (2)0.5930 (3)0.1036 (11)
H380.89760.00220.56570.124*
C390.9992 (3)0.0443 (2)0.6328 (3)0.1048 (11)
H391.07040.01880.63340.126*
C400.9983 (3)0.1272 (3)0.6717 (2)0.0936 (9)
H401.06890.12040.69870.112*
C410.8928 (2)0.2212 (2)0.67094 (18)0.0717 (6)
H410.89340.27830.69640.086*
C420.5465 (2)0.21028 (17)0.73280 (14)0.0578 (5)
C430.6285 (2)0.14702 (17)0.80398 (13)0.0555 (4)
H430.69410.17250.81150.067*
C440.6106 (2)0.05441 (17)0.85759 (14)0.0565 (5)
H440.54440.03190.84700.068*
C450.68219 (19)0.01640 (16)0.93118 (13)0.0534 (4)
C460.6598 (2)0.11931 (18)0.97154 (15)0.0632 (5)
H460.59820.13950.95230.076*
C470.7274 (2)0.19163 (19)1.03947 (15)0.0676 (6)
H470.71220.26031.06550.081*
C480.8172 (2)0.1612 (2)1.06821 (14)0.0655 (6)
C490.8405 (2)0.0588 (2)1.03070 (16)0.0661 (5)
H490.90080.03841.05130.079*
C500.7730 (2)0.01233 (17)0.96251 (14)0.0599 (5)
H500.78860.08090.93700.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0485 (3)0.0690 (3)0.0810 (4)0.0169 (2)0.0158 (2)0.0153 (3)
Cl20.1064 (5)0.0972 (5)0.0794 (4)0.0360 (4)0.0375 (4)0.0041 (4)
O10.0567 (8)0.0792 (10)0.0693 (9)0.0061 (7)0.0043 (7)0.0323 (8)
N10.0507 (8)0.0490 (8)0.0522 (8)0.0209 (7)0.0003 (7)0.0091 (7)
C10.0447 (9)0.0438 (9)0.0456 (9)0.0159 (7)0.0037 (7)0.0088 (7)
C20.0532 (10)0.0413 (9)0.0542 (10)0.0113 (8)0.0039 (8)0.0065 (8)
C30.0474 (10)0.0469 (10)0.0610 (11)0.0053 (8)0.0037 (8)0.0122 (8)
C40.0434 (9)0.0515 (10)0.0537 (10)0.0143 (8)0.0019 (7)0.0124 (8)
C50.0472 (9)0.0439 (9)0.0513 (10)0.0137 (7)0.0007 (7)0.0075 (7)
C60.0413 (8)0.0424 (9)0.0455 (9)0.0121 (7)0.0030 (7)0.0097 (7)
C70.0437 (9)0.0446 (9)0.0475 (9)0.0103 (7)0.0028 (7)0.0094 (7)
C80.0404 (9)0.0526 (10)0.0519 (10)0.0116 (7)0.0016 (7)0.0144 (8)
C90.0452 (9)0.0573 (11)0.0525 (10)0.0219 (8)0.0014 (7)0.0142 (8)
C100.0540 (12)0.0765 (14)0.0781 (15)0.0321 (11)0.0114 (10)0.0162 (12)
C110.0383 (8)0.0429 (9)0.0567 (10)0.0065 (7)0.0001 (7)0.0078 (8)
C120.0637 (12)0.0496 (10)0.0579 (11)0.0110 (9)0.0003 (9)0.0107 (9)
C130.0793 (15)0.0576 (12)0.0578 (12)0.0157 (11)0.0012 (10)0.0000 (10)
C140.0659 (13)0.0482 (11)0.0749 (14)0.0127 (9)0.0006 (11)0.0002 (10)
C150.0656 (13)0.0491 (11)0.0833 (16)0.0167 (9)0.0014 (11)0.0177 (10)
C160.0586 (11)0.0534 (11)0.0616 (12)0.0156 (9)0.0024 (9)0.0131 (9)
C170.0436 (9)0.0602 (11)0.0550 (11)0.0124 (8)0.0025 (8)0.0146 (9)
C180.0435 (10)0.0694 (13)0.0672 (13)0.0024 (9)0.0036 (9)0.0237 (10)
C190.0473 (10)0.0616 (12)0.0645 (12)0.0061 (9)0.0003 (9)0.0182 (10)
C200.0565 (11)0.0612 (12)0.0596 (12)0.0132 (9)0.0025 (9)0.0176 (10)
C210.0698 (13)0.0630 (13)0.0652 (13)0.0134 (10)0.0016 (10)0.0238 (11)
C220.0950 (17)0.0696 (14)0.0553 (12)0.0279 (13)0.0025 (11)0.0198 (11)
C230.0756 (14)0.0624 (13)0.0633 (13)0.0268 (11)0.0144 (11)0.0079 (10)
C240.0577 (13)0.0975 (19)0.0731 (15)0.0140 (12)0.0089 (11)0.0251 (14)
C250.0580 (12)0.1000 (19)0.0616 (13)0.0094 (12)0.0046 (10)0.0290 (13)
Cl30.0766 (4)0.1135 (5)0.0664 (3)0.0543 (4)0.0053 (3)0.0031 (3)
Cl40.0807 (4)0.1019 (5)0.0778 (4)0.0143 (4)0.0140 (3)0.0241 (4)
O20.1015 (13)0.0784 (11)0.1015 (14)0.0568 (11)0.0422 (11)0.0203 (10)
N20.0514 (8)0.0475 (8)0.0523 (8)0.0102 (7)0.0031 (7)0.0133 (7)
C260.0530 (10)0.0436 (9)0.0450 (9)0.0144 (7)0.0042 (7)0.0094 (7)
C270.0722 (13)0.0430 (10)0.0570 (11)0.0127 (9)0.0058 (9)0.0063 (8)
C280.0881 (15)0.0506 (11)0.0527 (11)0.0293 (11)0.0055 (10)0.0007 (9)
C290.0638 (12)0.0673 (12)0.0469 (10)0.0331 (10)0.0024 (8)0.0049 (9)
C300.0489 (10)0.0575 (11)0.0525 (10)0.0187 (8)0.0034 (8)0.0090 (8)
C310.0475 (9)0.0437 (9)0.0455 (9)0.0164 (7)0.0043 (7)0.0080 (7)
C320.0471 (9)0.0430 (9)0.0516 (9)0.0144 (7)0.0070 (7)0.0068 (7)
C330.0512 (10)0.0461 (9)0.0491 (9)0.0185 (8)0.0069 (7)0.0039 (7)
C340.0487 (9)0.0544 (10)0.0476 (9)0.0170 (8)0.0034 (7)0.0110 (8)
C350.0556 (12)0.0802 (15)0.0641 (13)0.0249 (11)0.0053 (10)0.0167 (11)
C360.0510 (10)0.0442 (9)0.0626 (11)0.0136 (8)0.0022 (8)0.0049 (8)
C370.0637 (13)0.0593 (13)0.114 (2)0.0181 (11)0.0014 (13)0.0297 (14)
C380.0825 (19)0.0600 (15)0.170 (3)0.0183 (14)0.015 (2)0.0479 (19)
C390.0656 (17)0.0584 (15)0.164 (3)0.0017 (12)0.0044 (18)0.0139 (18)
C400.0580 (14)0.0813 (18)0.121 (3)0.0008 (12)0.0186 (15)0.0100 (17)
C410.0559 (12)0.0682 (14)0.0839 (16)0.0075 (10)0.0137 (11)0.0146 (12)
C420.0596 (11)0.0514 (10)0.0620 (12)0.0247 (9)0.0069 (9)0.0008 (9)
C430.0590 (11)0.0495 (10)0.0567 (11)0.0203 (9)0.0040 (9)0.0048 (8)
C440.0571 (11)0.0497 (10)0.0600 (11)0.0191 (8)0.0023 (9)0.0055 (9)
C450.0554 (10)0.0450 (9)0.0525 (10)0.0126 (8)0.0050 (8)0.0074 (8)
C460.0676 (13)0.0562 (11)0.0635 (12)0.0262 (10)0.0025 (10)0.0044 (10)
C470.0739 (14)0.0528 (11)0.0627 (13)0.0189 (10)0.0073 (10)0.0020 (10)
C480.0588 (12)0.0623 (12)0.0542 (11)0.0054 (10)0.0054 (9)0.0002 (9)
C490.0602 (12)0.0679 (13)0.0653 (13)0.0170 (10)0.0036 (10)0.0104 (11)
C500.0640 (12)0.0478 (10)0.0628 (12)0.0167 (9)0.0024 (9)0.0055 (9)
Geometric parameters (Å, º) top
Cl1—C41.7382 (19)Cl3—C291.744 (2)
Cl2—C231.742 (2)Cl4—C481.739 (2)
O1—C171.217 (2)O2—C421.218 (3)
N1—C91.316 (3)N2—C341.319 (3)
N1—C11.365 (2)N2—C261.363 (3)
C1—C21.410 (3)C26—C271.413 (3)
C1—C61.416 (2)C26—C311.414 (3)
C2—C31.368 (3)C27—C281.364 (3)
C2—H20.9300C27—H270.9300
C3—C41.401 (3)C28—C291.397 (3)
C3—H30.9300C28—H280.9300
C4—C51.362 (3)C29—C301.358 (3)
C5—C61.413 (2)C30—C311.412 (3)
C5—H50.9300C30—H300.9300
C6—C71.431 (2)C31—C321.426 (2)
C7—C81.372 (3)C32—C331.374 (3)
C7—C111.492 (3)C32—C361.492 (3)
C8—C91.428 (3)C33—C341.431 (3)
C8—C171.517 (3)C33—C421.506 (3)
C9—C101.503 (3)C34—C351.501 (3)
C10—H10A0.9600C35—H35A0.9600
C10—H10B0.9600C35—H35B0.9600
C10—H10C0.9600C35—H35C0.9600
C11—C121.381 (3)C36—C371.379 (3)
C11—C161.387 (3)C36—C411.390 (3)
C12—C131.388 (3)C37—C381.390 (4)
C12—H120.9300C37—H370.9300
C13—C141.374 (3)C38—C391.364 (5)
C13—H130.9300C38—H380.9300
C14—C151.365 (4)C39—C401.364 (5)
C14—H140.9300C39—H390.9300
C15—C161.388 (3)C40—C411.382 (3)
C15—H150.9300C40—H400.9300
C16—H160.9300C41—H410.9300
C17—C181.464 (3)C42—C431.474 (3)
C18—C191.319 (3)C43—C441.328 (3)
C18—H180.9300C43—H430.9300
C19—C201.465 (3)C44—C451.461 (3)
C19—H190.9300C44—H440.9300
C20—C211.386 (3)C45—C501.389 (3)
C20—C251.394 (3)C45—C461.396 (3)
C21—C221.384 (4)C46—C471.380 (3)
C21—H210.9300C46—H460.9300
C22—C231.375 (4)C47—C481.369 (4)
C22—H220.9300C47—H470.9300
C23—C241.371 (4)C48—C491.387 (3)
C24—C251.377 (3)C49—C501.378 (3)
C24—H240.9300C49—H490.9300
C25—H250.9300C50—H500.9300
C9—N1—C1118.46 (16)C34—N2—C26118.56 (16)
N1—C1—C2118.14 (16)N2—C26—C27118.09 (17)
N1—C1—C6122.92 (16)N2—C26—C31123.31 (17)
C2—C1—C6118.93 (16)C27—C26—C31118.60 (18)
C3—C2—C1121.07 (17)C28—C27—C26121.1 (2)
C3—C2—H2119.5C28—C27—H27119.4
C1—C2—H2119.5C26—C27—H27119.4
C2—C3—C4119.13 (17)C27—C28—C29119.23 (19)
C2—C3—H3120.4C27—C28—H28120.4
C4—C3—H3120.4C29—C28—H28120.4
C5—C4—C3122.07 (17)C30—C29—C28122.08 (19)
C5—C4—Cl1119.37 (15)C30—C29—Cl3119.69 (17)
C3—C4—Cl1118.55 (14)C28—C29—Cl3118.22 (16)
C4—C5—C6119.44 (17)C29—C30—C31119.53 (19)
C4—C5—H5120.3C29—C30—H30120.2
C6—C5—H5120.3C31—C30—H30120.2
C5—C6—C1119.35 (16)C30—C31—C26119.43 (17)
C5—C6—C7122.85 (16)C30—C31—C32123.25 (17)
C1—C6—C7117.78 (15)C26—C31—C32117.30 (16)
C8—C7—C6118.00 (16)C33—C32—C31118.61 (16)
C8—C7—C11122.04 (16)C33—C32—C36121.53 (16)
C6—C7—C11119.96 (15)C31—C32—C36119.79 (16)
C7—C8—C9120.17 (16)C32—C33—C34119.91 (17)
C7—C8—C17120.18 (17)C32—C33—C42121.42 (17)
C9—C8—C17119.57 (16)C34—C33—C42118.64 (17)
N1—C9—C8122.56 (16)N2—C34—C33122.17 (17)
N1—C9—C10116.73 (18)N2—C34—C35116.12 (18)
C8—C9—C10120.69 (18)C33—C34—C35121.69 (18)
C9—C10—H10A109.5C34—C35—H35A109.5
C9—C10—H10B109.5C34—C35—H35B109.5
H10A—C10—H10B109.5H35A—C35—H35B109.5
C9—C10—H10C109.5C34—C35—H35C109.5
H10A—C10—H10C109.5H35A—C35—H35C109.5
H10B—C10—H10C109.5H35B—C35—H35C109.5
C12—C11—C16119.32 (19)C37—C36—C41118.8 (2)
C12—C11—C7119.69 (17)C37—C36—C32120.9 (2)
C16—C11—C7120.99 (18)C41—C36—C32120.26 (19)
C11—C12—C13120.0 (2)C36—C37—C38120.0 (3)
C11—C12—H12120.0C36—C37—H37120.0
C13—C12—H12120.0C38—C37—H37120.0
C14—C13—C12120.2 (2)C39—C38—C37120.4 (3)
C14—C13—H13119.9C39—C38—H38119.8
C12—C13—H13119.9C37—C38—H38119.8
C15—C14—C13120.3 (2)C40—C39—C38120.2 (3)
C15—C14—H14119.9C40—C39—H39119.9
C13—C14—H14119.9C38—C39—H39119.9
C14—C15—C16120.1 (2)C39—C40—C41120.1 (3)
C14—C15—H15120.0C39—C40—H40119.9
C16—C15—H15120.0C41—C40—H40119.9
C11—C16—C15120.2 (2)C40—C41—C36120.4 (3)
C11—C16—H16119.9C40—C41—H41119.8
C15—C16—H16119.9C36—C41—H41119.8
O1—C17—C18120.89 (18)O2—C42—C43122.00 (19)
O1—C17—C8119.33 (18)O2—C42—C33119.04 (19)
C18—C17—C8119.78 (17)C43—C42—C33118.92 (17)
C19—C18—C17125.35 (19)C44—C43—C42121.33 (19)
C19—C18—H18117.3C44—C43—H43119.3
C17—C18—H18117.3C42—C43—H43119.3
C18—C19—C20126.18 (19)C43—C44—C45127.8 (2)
C18—C19—H19116.9C43—C44—H44116.1
C20—C19—H19116.9C45—C44—H44116.1
C21—C20—C25117.8 (2)C50—C45—C46118.0 (2)
C21—C20—C19120.6 (2)C50—C45—C44123.49 (18)
C25—C20—C19121.6 (2)C46—C45—C44118.5 (2)
C22—C21—C20121.2 (2)C47—C46—C45121.2 (2)
C22—C21—H21119.4C47—C46—H46119.4
C20—C21—H21119.4C45—C46—H46119.4
C23—C22—C21119.1 (2)C48—C47—C46119.3 (2)
C23—C22—H22120.5C48—C47—H47120.4
C21—C22—H22120.5C46—C47—H47120.4
C24—C23—C22121.2 (2)C47—C48—C49121.2 (2)
C24—C23—Cl2118.6 (2)C47—C48—Cl4119.60 (18)
C22—C23—Cl2120.08 (19)C49—C48—Cl4119.2 (2)
C23—C24—C25119.1 (2)C50—C49—C48119.0 (2)
C23—C24—H24120.4C50—C49—H49120.5
C25—C24—H24120.4C48—C49—H49120.5
C24—C25—C20121.4 (2)C49—C50—C45121.3 (2)
C24—C25—H25119.3C49—C50—H50119.4
C20—C25—H25119.3C45—C50—H50119.4
C9—N1—C1—C2176.90 (17)C34—N2—C26—C27176.12 (18)
C9—N1—C1—C62.7 (3)C34—N2—C26—C313.2 (3)
N1—C1—C2—C3179.97 (18)N2—C26—C27—C28179.62 (19)
C6—C1—C2—C30.4 (3)C31—C26—C27—C280.2 (3)
C1—C2—C3—C40.5 (3)C26—C27—C28—C290.9 (3)
C2—C3—C4—C51.0 (3)C27—C28—C29—C301.3 (3)
C2—C3—C4—Cl1179.51 (16)C27—C28—C29—Cl3179.09 (17)
C3—C4—C5—C60.5 (3)C28—C29—C30—C310.7 (3)
Cl1—C4—C5—C6179.04 (14)Cl3—C29—C30—C31179.77 (15)
C4—C5—C6—C10.4 (3)C29—C30—C31—C260.5 (3)
C4—C5—C6—C7177.66 (17)C29—C30—C31—C32177.63 (18)
N1—C1—C6—C5179.54 (17)N2—C26—C31—C30179.74 (17)
C2—C1—C6—C50.9 (3)C27—C26—C31—C300.9 (3)
N1—C1—C6—C72.3 (3)N2—C26—C31—C322.0 (3)
C2—C1—C6—C7177.31 (16)C27—C26—C31—C32177.30 (17)
C5—C6—C7—C8177.51 (17)C30—C31—C32—C33176.60 (17)
C1—C6—C7—C80.6 (3)C26—C31—C32—C331.5 (3)
C5—C6—C7—C112.4 (3)C30—C31—C32—C360.4 (3)
C1—C6—C7—C11179.46 (16)C26—C31—C32—C36178.50 (17)
C6—C7—C8—C92.9 (3)C31—C32—C33—C343.8 (3)
C11—C7—C8—C9177.17 (17)C36—C32—C33—C34179.30 (17)
C6—C7—C8—C17173.98 (16)C31—C32—C33—C42174.06 (17)
C11—C7—C8—C176.0 (3)C36—C32—C33—C422.8 (3)
C1—N1—C9—C80.2 (3)C26—N2—C34—C330.8 (3)
C1—N1—C9—C10178.50 (17)C26—N2—C34—C35179.19 (17)
C7—C8—C9—N12.6 (3)C32—C33—C34—N22.7 (3)
C17—C8—C9—N1174.28 (18)C42—C33—C34—N2175.19 (18)
C7—C8—C9—C10175.59 (19)C32—C33—C34—C35175.55 (18)
C17—C8—C9—C107.5 (3)C42—C33—C34—C356.5 (3)
C8—C7—C11—C12111.0 (2)C33—C32—C36—C3769.7 (3)
C6—C7—C11—C1269.0 (2)C31—C32—C36—C37107.1 (2)
C8—C7—C11—C1669.5 (3)C33—C32—C36—C41110.8 (2)
C6—C7—C11—C16110.4 (2)C31—C32—C36—C4172.3 (3)
C16—C11—C12—C130.0 (3)C41—C36—C37—C380.6 (4)
C7—C11—C12—C13179.45 (19)C32—C36—C37—C38179.9 (3)
C11—C12—C13—C140.7 (4)C36—C37—C38—C390.9 (5)
C12—C13—C14—C151.0 (4)C37—C38—C39—C401.2 (6)
C13—C14—C15—C160.5 (4)C38—C39—C40—C410.0 (6)
C12—C11—C16—C150.5 (3)C39—C40—C41—C361.5 (5)
C7—C11—C16—C15178.98 (18)C37—C36—C41—C401.8 (4)
C14—C15—C16—C110.2 (3)C32—C36—C41—C40178.7 (2)
C7—C8—C17—O191.2 (2)C32—C33—C42—O2119.1 (3)
C9—C8—C17—O185.7 (2)C34—C33—C42—O258.8 (3)
C7—C8—C17—C1888.1 (2)C32—C33—C42—C4363.1 (3)
C9—C8—C17—C1895.0 (2)C34—C33—C42—C43119.0 (2)
O1—C17—C18—C19174.0 (2)O2—C42—C43—C445.8 (4)
C8—C17—C18—C195.3 (4)C33—C42—C43—C44171.9 (2)
C17—C18—C19—C20176.6 (2)C42—C43—C44—C45179.3 (2)
C18—C19—C20—C21159.6 (2)C43—C44—C45—C508.2 (3)
C18—C19—C20—C2519.1 (4)C43—C44—C45—C46170.8 (2)
C25—C20—C21—C223.5 (4)C50—C45—C46—C471.2 (3)
C19—C20—C21—C22175.3 (2)C44—C45—C46—C47177.8 (2)
C20—C21—C22—C230.6 (4)C45—C46—C47—C480.6 (3)
C21—C22—C23—C242.7 (4)C46—C47—C48—C490.5 (3)
C21—C22—C23—Cl2175.03 (19)C46—C47—C48—Cl4179.29 (17)
C22—C23—C24—C252.9 (4)C47—C48—C49—C501.0 (3)
Cl2—C23—C24—C25174.8 (2)Cl4—C48—C49—C50178.82 (17)
C23—C24—C25—C200.2 (5)C48—C49—C50—C450.3 (3)
C21—C20—C25—C243.3 (4)C46—C45—C50—C490.8 (3)
C19—C20—C25—C24175.5 (3)C44—C45—C50—C49178.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C38—H38···Cg1i0.932.933.458 (3)117
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H17Cl2NO
Mr418.30
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.1704 (3), 12.8497 (5), 16.0591 (6)
α, β, γ (°)74.914 (3), 80.603 (3), 70.789 (3)
V3)2094.05 (13)
Z4
Radiation typeCu Kα
µ (mm1)2.91
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.574, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14958, 8252, 7088
Rint0.026
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.158, 1.03
No. of reflections8252
No. of parameters525
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.41

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C38—H38···Cg1i0.932.933.458 (3)117
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoman, G. (2004). Acta Chim. Slov. 51, 537–544.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds