metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(aceto­nitrile-κN)di-μ-thio­cyanato-κ2N,S;κ2S,N-nickel(II)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 25 January 2011; accepted 2 February 2011; online 5 February 2011)

In the title compound, [Ni(NCS)2(CH3CN)2]n, the NiII cation is coordinated by two N-bonded and two S-bonded thio­cyanate anions, as well as two acetonitrile mol­ecules in an octa­hedral NiN4S2 coordination mode. The asymmetric unit comprises one nickel cation, two thio­cyanate anions and two actonitrile mol­ecules. In the crystal, the NiII cations are connected by bridging thio­cyanate anions into a three-dimensional coordination network.

Related literature

For background of this work see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019-11026.]); Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984.],b[Wriedt, M., Jess, J. & Näther, C. (2009b). Eur. J. Inorg. Chem. pp. 1406-1413.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C2H3N)2]

  • Mr = 256.98

  • Orthorhombic, P 21 21 21

  • a = 9.0666 (4) Å

  • b = 9.1215 (3) Å

  • c = 12.0696 (6) Å

  • V = 998.17 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 293 K

  • 0.11 × 0.09 × 0.06 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.683, Tmax = 0.772

  • 11157 measured reflections

  • 2694 independent reflections

  • 2479 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.051

  • S = 1.29

  • 2694 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1141 Friedel pairs

  • Flack parameter: −0.003 (13)

Data collection: X-AREA (Stoe & Cie, 2008)[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

In recent work, we have shown that thermal decomposition reactions are an elegant route for discovering and synthesising new ligand-deficient coordination polymers with attractive magnetic properties (Boeckmann & Näther, 2010; Wriedt et al., 2009a, 2009b). In our investigation on the syntheses, structures and properties of such compounds based on paramagnetic transition metals, pseudo-halides and N-donor ligands, we have reacted nickel(II) thiocyanate and trans-1,2-bis(4-pyridyl)-ethylene in acteonitrile. In this reaction single crystals of the title compound were obtained accidentally in a mixture with an unknown phase. To identify the reaction product the compound was investigated by single crystal X-ray diffraction.

In the crystal structure of the title compound, each nickel(II) cation is coordinated by four bridging thiocyanato anions and by two acetonitrile molecules (Fig. 1). The NiN4S2 octahedron is slightly distorted with two long Ni—SCN distances of 2.5305 (6) Å and 2.5341 (6) Å as well as two short Ni—NCS distances of 2.021 (2) Å and 2.023 (2) Å. The angles around the metal atom range from 87.88 (6) ° to 93.23 (6) ° and 178° (Tab. 1).

The nickel cations are linked by the thiocyanato anions into chains, that are further connected into a three-dimensional network (Fig. 2). The shortest intramolecular Ni···Ni distance amounts to 5.7052 (4) Å and the shortest intermolecular Ni···Ni distance amounts to 9.0666 (4) Å.

Related literature top

For background of this work see: Boeckmann & Näther (2010); Wriedt et al. (2009a,b).

Experimental top

Ni(NCS)2 was obtained from Alfa Aesar and trans-1,2-bis(4-pyridyl)-ethylene (bpe) was obtained from Sigma Aldrich. All chemicals were used without further purification. 0.6 mmol (104.7 mg) Ni(NCS)2 and 0.15 mmol (28.2 mg) bpe were reacted with 1 ml acetonitrile in a closed test-tube at 120°C for three days. On cooling blue block-shaped single crystals of the title compound were obtained in a mixture with a unknown phase. It must be noted, that the reaction without bpe does not lead to the formation of the title compound.

Refinement top

H atoms were positioned with idealized geometry, allowed to rotate but not to tip and were refined isotropically with Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å using a riding model. The absolute structure was determined on the basis of 1127 Friedel pairs.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30 % probability level. Symmetry codes: i = x-1/2, -y+3/2, -z+1; ii = -x, y-1/2, -z+3/2.
[Figure 2] Fig. 2. Crystal structure of the title compound approximately viewed along the crystallographic b-axis.
Poly[bis(acetonitrile-κN)di-µ-thiocyanato- κ2N,S;κ2S,N-nickel(II)] top
Crystal data top
[Ni(NCS)2(C2H3N)2]F(000) = 520
Mr = 256.98Dx = 1.710 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11157 reflections
a = 9.0666 (4) Åθ = 2.8–29.2°
b = 9.1215 (3) ŵ = 2.32 mm1
c = 12.0696 (6) ÅT = 293 K
V = 998.17 (7) Å3Block, blue
Z = 40.11 × 0.09 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2694 independent reflections
Radiation source: fine-focus sealed tube2479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1210
Tmin = 0.683, Tmax = 0.772k = 1212
11157 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0221P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
2694 reflectionsΔρmax = 0.29 e Å3
120 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1127 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (13)
Crystal data top
[Ni(NCS)2(C2H3N)2]V = 998.17 (7) Å3
Mr = 256.98Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0666 (4) ŵ = 2.32 mm1
b = 9.1215 (3) ÅT = 293 K
c = 12.0696 (6) Å0.11 × 0.09 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2694 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2479 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.772Rint = 0.023
11157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.051Δρmax = 0.29 e Å3
S = 1.29Δρmin = 0.28 e Å3
2694 reflectionsAbsolute structure: Flack (1983), 1127 Friedel pairs
120 parametersAbsolute structure parameter: 0.003 (13)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.10172 (3)0.83322 (3)0.62898 (2)0.02615 (6)
N10.0070 (2)1.0335 (2)0.63730 (18)0.0388 (4)
C10.0391 (2)1.1504 (3)0.64845 (15)0.0307 (4)
S10.10459 (8)1.31745 (6)0.66142 (4)0.03781 (12)
N20.0983 (2)0.7362 (2)0.61691 (15)0.0356 (4)
C20.2172 (2)0.6972 (2)0.60194 (15)0.0283 (4)
S20.38867 (6)0.64753 (7)0.58006 (4)0.03776 (13)
N30.2036 (2)0.6293 (2)0.62176 (17)0.0341 (4)
C30.2491 (2)0.5139 (3)0.6242 (2)0.0335 (4)
C40.3109 (3)0.3669 (3)0.6278 (3)0.0468 (6)
H4A0.41340.37230.64720.070*
H4B0.25930.30980.68230.070*
H4C0.30070.32150.55650.070*
N40.3065 (2)0.9326 (2)0.63801 (17)0.0365 (4)
C50.4170 (2)0.9893 (2)0.63197 (19)0.0344 (4)
C60.5579 (3)1.0633 (3)0.6230 (3)0.0452 (5)
H6A0.57431.12150.68810.068*
H6B0.63510.99200.61610.068*
H6C0.55751.12560.55890.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02348 (10)0.02426 (11)0.03072 (11)0.00044 (11)0.00046 (11)0.00142 (9)
N10.0458 (11)0.0336 (10)0.0371 (9)0.0091 (8)0.0039 (10)0.0018 (9)
C10.0340 (9)0.0322 (11)0.0258 (9)0.0008 (9)0.0008 (7)0.0003 (8)
S10.0523 (3)0.0278 (3)0.0333 (2)0.0104 (3)0.0001 (2)0.00087 (19)
N20.0288 (7)0.0434 (9)0.0346 (9)0.0041 (9)0.0021 (10)0.0025 (7)
C20.0318 (9)0.0280 (10)0.0252 (8)0.0010 (8)0.0010 (7)0.0013 (7)
S20.0262 (2)0.0527 (3)0.0343 (2)0.0089 (3)0.0010 (2)0.0033 (2)
N30.0339 (8)0.0314 (10)0.0369 (9)0.0033 (7)0.0016 (9)0.0011 (9)
C30.0351 (9)0.0332 (11)0.0322 (9)0.0013 (8)0.0007 (9)0.0025 (9)
C40.0585 (15)0.0327 (12)0.0492 (13)0.0105 (11)0.0028 (14)0.0001 (12)
N40.0334 (9)0.0379 (10)0.0382 (9)0.0053 (8)0.0016 (9)0.0003 (9)
C50.0333 (10)0.0368 (10)0.0332 (9)0.0002 (9)0.0007 (10)0.0034 (9)
C60.0326 (10)0.0485 (13)0.0547 (14)0.0061 (10)0.0018 (12)0.0008 (13)
Geometric parameters (Å, º) top
Ni1—N12.0210 (19)S2—Ni1iv2.5305 (6)
Ni1—N22.0231 (18)N3—C31.131 (3)
Ni1—N42.0685 (19)C3—C41.454 (3)
Ni1—N32.0782 (18)C4—H4A0.9600
Ni1—S2i2.5305 (6)C4—H4B0.9600
Ni1—S1ii2.5341 (6)C4—H4C0.9600
N1—C11.154 (3)N4—C51.130 (3)
C1—S11.643 (2)C5—C61.449 (3)
S1—Ni1iii2.5341 (6)C6—H6A0.9600
N2—C21.149 (3)C6—H6B0.9600
C2—S21.641 (2)C6—H6C0.9600
N1—Ni1—N291.02 (8)N2—C2—S2178.0 (2)
N1—Ni1—N489.02 (8)C2—S2—Ni1iv100.02 (7)
N2—Ni1—N4178.89 (9)C3—N3—Ni1173.7 (2)
N1—Ni1—N3178.69 (9)N3—C3—C4178.7 (3)
N2—Ni1—N390.23 (8)C3—C4—H4A109.5
N4—Ni1—N389.73 (8)C3—C4—H4B109.5
N1—Ni1—S2i90.09 (6)H4A—C4—H4B109.5
N2—Ni1—S2i89.40 (5)C3—C4—H4C109.5
N4—Ni1—S2i89.50 (6)H4A—C4—H4C109.5
N3—Ni1—S2i90.29 (6)H4B—C4—H4C109.5
N1—Ni1—S1ii90.35 (6)C5—N4—Ni1173.2 (2)
N2—Ni1—S1ii93.23 (6)N4—C5—C6179.2 (3)
N4—Ni1—S1ii87.88 (6)C5—C6—H6A109.5
N3—Ni1—S1ii89.22 (6)C5—C6—H6B109.5
S2i—Ni1—S1ii177.34 (2)H6A—C6—H6B109.5
C1—N1—Ni1174.6 (2)C5—C6—H6C109.5
N1—C1—S1178.77 (19)H6A—C6—H6C109.5
C1—S1—Ni1iii98.29 (7)H6B—C6—H6C109.5
C2—N2—Ni1170.90 (18)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C2H3N)2]
Mr256.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.0666 (4), 9.1215 (3), 12.0696 (6)
V3)998.17 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.11 × 0.09 × 0.06
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.683, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
11157, 2694, 2479
Rint0.023
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.051, 1.29
No. of reflections2694
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28
Absolute structureFlack (1983), 1127 Friedel pairs
Absolute structure parameter0.003 (13)

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), XCIF in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. pp. 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M., Jess, J. & Näther, C. (2009b). Eur. J. Inorg. Chem. pp. 1406–1413.  Web of Science CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds