organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-1-(3-sulfonato­prop­yl)pyridinium monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 January 2011; accepted 2 February 2011; online 5 February 2011)

In the title compound, C8H12N2O3S·H2O, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, which form R12(6) and R22(12) ring motifs, link the components into a three-dimensional network.

Related literature

For applications of sulfopropyl derivatives, see: Adamczyk & Rege (1998[Adamczyk, M. & Rege, S. (1998). Tetrahedron Lett. 39, 9587-9588.]). For the biological activity of 2-amino­pyridine, see: Salimon et al. (2009[Salimon, J., Salih, N., Hussien, H. & Yousif, E. (2009). Eur. J. Sci. Res. 31, 256-264.]). For a related structure, see: Koclega et al. (2007[Koclega, K. D., Chruszcz, M., Gawlicka-Chruszcz, A., Cymborowski, M. & Minor, W. (2007). Acta Cryst. C63, o114-o116.]). For the title compound as a heterogeneous catalyst, see: Jayamurugan et al. (2009[Jayamurugan, G., Umesh, C. P. & Jayarman, N. (2009). J. Mol. Catal. A Chem. 307, 142-148.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2O3S·H2O

  • Mr = 234.27

  • Monoclinic, P 21 /c

  • a = 9.0771 (3) Å

  • b = 16.6307 (7) Å

  • c = 7.4393 (3) Å

  • β = 112.794 (1)°

  • V = 1035.32 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.51 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.958

  • 15075 measured reflections

  • 4050 independent reflections

  • 3694 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.082

  • S = 1.04

  • 4050 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.862 (15) 2.009 (14) 2.8553 (10) 167.0 (13)
O1W—H1W1⋯O2ii 0.89 (2) 1.95 (2) 2.8289 (9) 171.5 (19)
N2—H2N2⋯O1W 0.875 (16) 2.055 (16) 2.9139 (11) 166.9 (15)
O1W—H2W1⋯O2iii 0.822 (19) 2.007 (19) 2.8270 (10) 175 (2)
C1—H1A⋯O1iv 0.93 2.57 3.4076 (11) 150
C2—H2A⋯O1Wv 0.93 2.58 3.3595 (11) 142
C6—H6A⋯O3i 0.97 2.53 3.3160 (11) 138
C6—H6B⋯O1iv 0.97 2.52 3.2589 (11) 133
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{3\over 2}}]; (iii) x+1, y, z+1; (iv) -x, -y, -z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The sulfopropyl group has been widely used as a hydrophilic enhancing agent in dye, nucleocides, proteins and polymers (Adamczyk & Rege, 1998). In addition, derivatives of sulfopropylated compounds are used extensively in both manufacturing and diagnostic industries. For example, sulfopropylated fatty acids have been found to possess antistatic properties while sulfopropylated acridines have been used industrially as chemiluminescent probes (Adamczyk & Rege, 1998). These properties of sultone can be acredited to the CH2 group attached to the S atom which allowed attachment to other organic fragments such as the 2-amino pyridine group in the current study. The indisputable application of 2-aminopyridine in the synthesis of pharmaceuticals such as antihistamines and piroxican has been the main reason for its substantial desirability up to now (Salimon et al., 2009). In this study, sultone was reacted with 2-aminopyridine and attachment was achieved through the N atom in the ring. This compound allows the immobilization onto silica to serve as a heterogeneous catalyst in various industrial applications (Jayamurugan et al., 2009).

All parameters in the title compound (I), Fig. 1, are within normal ranges and comparable to a related structure (Koclega et al., 2007). The torsion angles S1-C8-C7-C6 and N1-C6-C7-C8 are -178.36 (5) and -179.58 (6)° respectively. In the selected asymmetric unit, the 2-amino-N-3-sulfatepropyl-pyridinium molecule is linked to the water molecule through an N2—H2N2···O1W (Table 1, Fig. 1) intermolecular hydrogen bond.

In the crystal structure, intermolecular O1W—H1W1···O2ii, O1W—H2W1···O2iii, N2—H1N2···O3i, C6—H6B···O1iv, C1—H1A···O1iv, C2—H2A···O1Wv and weak C6—H6A···O3i hydrogen bnods (Table 1, Fig. 2) link molecules into a three-dimensional network. The weak C6—H6B···O1iv interactions are involved in R22(12) ring motifs while weak C1—H1A···O1iv interactions form R12 (6) ring motifs (Bernstein et al., 1995).

Related literature top

For applications of sulfopropyl derivatives, see: Adamczyk & Rege (1998). For the biological activity of 2-aminopyridine, see: Salimon et al. (2009). For a related structure, see: Koclega et al. (2007). For the title compound as a heterogeneous catalyst, see: Jayamurugan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2-amino pyridine (3g, 1.9 mmol) was dissolved in acetonitrile (20 ml). 1,3-propane sultone (2.8 ml, 1.9 mmol) was added to the mixture and was refluxed at 353 K for 1 h. The light yellowish precipitate was filtered and washed with acetonitrile (10 ml) and diethyl ether (10 ml). The product was recrystallized in methanol: water (9:1 ratio) to produce light yellow needle-shaped crystals.

Refinement top

H atoms attached to N and O atoms were located from difference Fourier map and freely refined. The remaining H atoms were positioned geometrically [C-H = 0.93 and 0.97Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
2-Amino-1-(3-sulfonatopropyl)pyridinium monohydrate top
Crystal data top
C8H12N2O3S·H2OF(000) = 496
Mr = 234.27Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7571 reflections
a = 9.0771 (3) Åθ = 3.2–33.6°
b = 16.6307 (7) ŵ = 0.31 mm1
c = 7.4393 (3) ÅT = 100 K
β = 112.794 (1)°Needle, light-yellow
V = 1035.32 (7) Å30.51 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4050 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 33.6°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.858, Tmax = 0.958k = 2425
15075 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3224P]
where P = (Fo2 + 2Fc2)/3
4050 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H12N2O3S·H2OV = 1035.32 (7) Å3
Mr = 234.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0771 (3) ŵ = 0.31 mm1
b = 16.6307 (7) ÅT = 100 K
c = 7.4393 (3) Å0.51 × 0.14 × 0.14 mm
β = 112.794 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3694 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.958Rint = 0.023
15075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
4050 reflectionsΔρmin = 0.41 e Å3
152 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02015 (2)0.135731 (11)0.20477 (3)0.00995 (6)
O10.04125 (8)0.05139 (4)0.23882 (9)0.01617 (12)
O20.13259 (7)0.16825 (4)0.34346 (9)0.01625 (12)
O30.15490 (7)0.18591 (4)0.19553 (9)0.01467 (12)
N10.29524 (8)0.09165 (4)0.54330 (9)0.01030 (12)
N20.40686 (9)0.22107 (4)0.57767 (11)0.01460 (13)
C10.30927 (10)0.01161 (5)0.59030 (12)0.01312 (14)
H1A0.22530.02290.52360.016*
C20.44337 (10)0.01854 (5)0.73247 (12)0.01495 (14)
H2A0.45310.07330.76040.018*
C30.56716 (10)0.03537 (5)0.83638 (12)0.01397 (14)
H3A0.65770.01670.93840.017*
C40.55426 (9)0.11494 (5)0.78738 (11)0.01314 (14)
H4A0.63640.15020.85580.016*
C50.41636 (9)0.14415 (5)0.63289 (11)0.01089 (13)
C60.14495 (9)0.11861 (5)0.38687 (11)0.01081 (13)
H6A0.12160.17340.41220.013*
H6B0.05750.08460.38470.013*
C70.16001 (9)0.11457 (5)0.19015 (11)0.01233 (13)
H7A0.24830.14820.19320.015*
H7B0.18290.05970.16490.015*
C80.00708 (9)0.14264 (5)0.02759 (11)0.01198 (13)
H8A0.01400.19800.05140.014*
H8B0.08150.11000.02750.014*
O1W0.71613 (8)0.30058 (4)0.75218 (10)0.01777 (13)
H1N20.3233 (17)0.2419 (8)0.489 (2)0.020 (3)*
H1W10.772 (2)0.3125 (10)0.877 (3)0.034 (4)*
H2N20.4915 (18)0.2508 (9)0.636 (2)0.025 (3)*
H2W10.765 (2)0.2638 (11)0.726 (3)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01095 (9)0.01021 (9)0.00793 (9)0.00137 (6)0.00282 (6)0.00137 (5)
O10.0228 (3)0.0105 (3)0.0159 (3)0.0020 (2)0.0082 (2)0.0038 (2)
O20.0142 (3)0.0222 (3)0.0094 (2)0.0024 (2)0.0014 (2)0.0011 (2)
O30.0156 (3)0.0152 (3)0.0138 (3)0.0060 (2)0.0064 (2)0.0030 (2)
N10.0103 (3)0.0104 (3)0.0087 (3)0.0005 (2)0.0021 (2)0.0004 (2)
N20.0123 (3)0.0107 (3)0.0165 (3)0.0005 (2)0.0008 (2)0.0015 (2)
C10.0153 (3)0.0109 (3)0.0126 (3)0.0007 (2)0.0048 (3)0.0004 (2)
C20.0169 (3)0.0123 (3)0.0147 (3)0.0022 (3)0.0051 (3)0.0029 (3)
C30.0133 (3)0.0157 (3)0.0121 (3)0.0033 (3)0.0041 (3)0.0022 (3)
C40.0110 (3)0.0146 (3)0.0115 (3)0.0007 (3)0.0018 (2)0.0001 (3)
C50.0103 (3)0.0112 (3)0.0102 (3)0.0003 (2)0.0029 (2)0.0005 (2)
C60.0097 (3)0.0128 (3)0.0087 (3)0.0008 (2)0.0023 (2)0.0003 (2)
C70.0113 (3)0.0160 (3)0.0090 (3)0.0020 (3)0.0032 (2)0.0003 (2)
C80.0108 (3)0.0156 (3)0.0085 (3)0.0015 (2)0.0027 (2)0.0001 (2)
O1W0.0167 (3)0.0174 (3)0.0147 (3)0.0013 (2)0.0010 (2)0.0018 (2)
Geometric parameters (Å, º) top
S1—O11.4511 (6)C3—C41.3655 (12)
S1—O31.4602 (6)C3—H3A0.9300
S1—O21.4734 (6)C4—C51.4174 (11)
S1—C81.7817 (8)C4—H4A0.9300
N1—C51.3593 (10)C6—C71.5231 (11)
N1—C11.3695 (10)C6—H6A0.9700
N1—C61.4786 (10)C6—H6B0.9700
N2—C51.3361 (10)C7—C81.5188 (11)
N2—H1N20.861 (14)C7—H7A0.9700
N2—H2N20.874 (15)C7—H7B0.9700
C1—C21.3616 (11)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.4110 (12)O1W—H1W10.892 (17)
C2—H2A0.9300O1W—H2W10.825 (19)
O1—S1—O3113.32 (4)C5—C4—H4A119.8
O1—S1—O2112.62 (4)N2—C5—N1121.38 (7)
O3—S1—O2111.53 (4)N2—C5—C4120.60 (7)
O1—S1—C8107.14 (4)N1—C5—C4118.02 (7)
O3—S1—C8106.67 (4)N1—C6—C7110.12 (6)
O2—S1—C8104.92 (4)N1—C6—H6A109.6
C5—N1—C1121.44 (7)C7—C6—H6A109.6
C5—N1—C6121.03 (7)N1—C6—H6B109.6
C1—N1—C6117.50 (6)C7—C6—H6B109.6
C5—N2—H1N2123.5 (9)H6A—C6—H6B108.2
C5—N2—H2N2116.6 (10)C8—C7—C6110.91 (6)
H1N2—N2—H2N2119.9 (14)C8—C7—H7A109.5
C2—C1—N1121.53 (7)C6—C7—H7A109.5
C2—C1—H1A119.2C8—C7—H7B109.5
N1—C1—H1A119.2C6—C7—H7B109.5
C1—C2—C3118.30 (8)H7A—C7—H7B108.0
C1—C2—H2A120.9C7—C8—S1111.64 (6)
C3—C2—H2A120.9C7—C8—H8A109.3
C4—C3—C2120.12 (7)S1—C8—H8A109.3
C4—C3—H3A119.9C7—C8—H8B109.3
C2—C3—H3A119.9S1—C8—H8B109.3
C3—C4—C5120.41 (8)H8A—C8—H8B108.0
C3—C4—H4A119.8H1W1—O1W—H2W1105.9 (16)
C5—N1—C1—C21.82 (12)C3—C4—C5—N2176.43 (8)
C6—N1—C1—C2179.98 (7)C3—C4—C5—N13.44 (12)
N1—C1—C2—C32.11 (12)C5—N1—C6—C787.55 (9)
C1—C2—C3—C43.15 (12)C1—N1—C6—C790.66 (8)
C2—C3—C4—C50.38 (13)N1—C6—C7—C8179.58 (6)
C1—N1—C5—N2175.31 (8)C6—C7—C8—S1178.36 (5)
C6—N1—C5—N22.83 (12)O1—S1—C8—C762.61 (7)
C1—N1—C5—C44.56 (11)O3—S1—C8—C759.04 (7)
C6—N1—C5—C4177.31 (7)O2—S1—C8—C7177.48 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.862 (15)2.009 (14)2.8553 (10)167.0 (13)
O1W—H1W1···O2ii0.89 (2)1.95 (2)2.8289 (9)171.5 (19)
N2—H2N2···O1W0.875 (16)2.055 (16)2.9139 (11)166.9 (15)
O1W—H2W1···O2iii0.822 (19)2.007 (19)2.8270 (10)175 (2)
C1—H1A···O1iv0.932.573.4076 (11)150
C2—H2A···O1Wv0.932.583.3595 (11)142
C6—H6A···O3i0.972.533.3160 (11)138
C6—H6B···O1iv0.972.523.2589 (11)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x, y, z; (v) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H12N2O3S·H2O
Mr234.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0771 (3), 16.6307 (7), 7.4393 (3)
β (°) 112.794 (1)
V3)1035.32 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.51 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.858, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
15075, 4050, 3694
Rint0.023
(sin θ/λ)max1)0.779
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.04
No. of reflections4050
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.862 (15)2.009 (14)2.8553 (10)167.0 (13)
O1W—H1W1···O2ii0.89 (2)1.95 (2)2.8289 (9)171.5 (19)
N2—H2N2···O1W0.875 (16)2.055 (16)2.9139 (11)166.9 (15)
O1W—H2W1···O2iii0.822 (19)2.007 (19)2.8270 (10)175 (2)
C1—H1A···O1iv0.932.573.4076 (11)150
C2—H2A···O1Wv0.932.583.3595 (11)142
C6—H6A···O3i0.972.533.3160 (11)138
C6—H6B···O1iv0.972.523.2589 (11)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x, y, z; (v) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the RU research grant (No. 1001/PKIMIA/814019). CWK would also like to acknowledge an NSF scholarship. HKF and MMR also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAdamczyk, M. & Rege, S. (1998). Tetrahedron Lett. 39, 9587–9588.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayamurugan, G., Umesh, C. P. & Jayarman, N. (2009). J. Mol. Catal. A Chem. 307, 142–148.  Web of Science CrossRef CAS Google Scholar
First citationKoclega, K. D., Chruszcz, M., Gawlicka-Chruszcz, A., Cymborowski, M. & Minor, W. (2007). Acta Cryst. C63, o114–o116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalimon, J., Salih, N., Hussien, H. & Yousif, E. (2009). Eur. J. Sci. Res. 31, 256–264.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds