organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Decyl­ammonium octa­noate

aDepartment of Chemistry and BP Institute, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bDepartment of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: stuart@bpi.cam.ac.uk

(Received 7 February 2011; accepted 10 February 2011; online 19 February 2011)

The title compound, C10H24N+·C8H15O2, forms a layered structure in which inter­molecular N+—H⋯O hydrogen bonds connect anions and cations, forming a two-dimensional network parallel to (010). The n-alkyl chains of the decyl­ammonium cations pack according to an ortho­rhom­bic `subcell' with approximate dimensions 5.1 × 7.3 Å, and they are significantly distorted from planarity.

Related literature

For background literature concerning compounds of alkyl carb­oxy­lic acids and primary alkyl amines, see: Backlund et al. (1994[Backlund, S., Karlsson, S. & Sjoblom, J. (1994). J. Dispersion Sci. Technol. 15, 561-573.], 1997[Backlund, S., Friman, R. & Karlsson, S. (1997). Colloids Surf. A, 123, 125-133.]); Karlsson et al. (2000[Karlsson, S., Backlund, S. & Friman, R. (2000). Colloid Polym. Sci. 278, 8-14.], 2001[Karlsson, S., Friman, R., Lindstrom, B. & Backlund, S. (2001). J. Colloid Interface Sci. 243, 241-247.]); Kohler et al. (1972[Kohler, F., Miksch, G., Kainz, C. & Liebermann, E. (1972). J. Phys. Chem. 76, 2764-2768.]); Kohler, Atrops, et al. (1981[Kohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. & Salamon, T. (1981). J. Phys. Chem. 85, 2520-2524.]); Kohler, Gopal, et al. (1981[Kohler, F., Gopal, R., Gotze, G., Atrops, H., Demiriz, M. A., Liebermann, E., Wilhelm, E., Ratkovics, F. & Palagy, B. (1981). J. Phys. Chem. 85, 2524-2529.]). For a description of the `subcell' associated with the packing of the n-alkyl chains, see: Dorset (2005[Dorset, D. L. (2005). Crystallography of the Polymethylene Chain. IUCr Monograph on Crystallography 17. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C10H24N+·C8H15O2

  • Mr = 301.50

  • Monoclinic, P 21 /c

  • a = 5.5526 (2) Å

  • b = 44.489 (2) Å

  • c = 8.0931 (4) Å

  • β = 100.788 (3)°

  • V = 1963.90 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 180 K

  • 0.35 × 0.18 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.773, Tmax = 1.000

  • 5524 measured reflections

  • 2233 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 22.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.02

  • 2233 reflections

  • 202 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.93 (1) 1.89 (1) 2.788 (3) 164 (2)
N1—H1C⋯O1i 0.92 (1) 1.91 (1) 2.821 (3) 170 (2)
N1—H1A⋯O2ii 0.92 (1) 1.85 (1) 2.768 (3) 175 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The combination of alkyl carboxylic acids and primary alkyl amines is of continuing interest both in the bulk and in adsorbed monolayers. There is mainly spectroscopic evidence that a number of stoichiometric complexes can form, depending upon the molecular structure: combinations AB (1 acid: 1 amine), A2B and A3B have been reported (Backlund et al., 1994; Backlund et al., 1997; Karlsson et al., 2000; Karlsson et al., 2001; Kohler, Atrops et al., 1981; Kohler, Gopal et al., 1981; Kohler et al., 1972). Interestingly, similar complexes have not been reported on the amine-rich side of the phase diagram. The precise nature of the complexation is still a matter of debate, but hydrogen bonding between the species is obviously strongly implicated and different structures have been proposed on this basis. However, we are not aware of any single-crystal diffraction studies for these materials.

The absence of reported single-crystal data for this class of complexes is probably attributable to difficulties in obtaining suitable crystals. Our various crystallization attempts have consistently failed, and our discovery of the crystal used for this study was serendipitous. The crystal was a thin plate that diffracted weakly, and data could be measured only to 0.95 Å resolution. Nonetheless, the data are adequate to localize the H atoms associated with the ammonium group, and these H atoms could be refined satisfactorily with restrained N—H bond lengths and individual isotropic displacement parameters. The C—O bond lengths of 1.269 (3) and 1.253 (3) Å are also consistent with proton transfer to yield a carboxylate anion. Both molecules adopt essentially fully extended conformations (i.e. the torsion angles along the main chain are all close to 180°), although the decylammonium chain is clearly disorted from planarity (Fig. 1). As a measure of this distortion, we note that the terminal C atom of the chain (C10) lies 1.43 (1) Å from the mean plane defined by atoms C1, C2 and C3.

As might be expected, the crystal structure is layered, with the hydrophilic sections accommodated around the glide planes parallel to (010) at y = 1/4 and 3/4 (Fig. 2). The hydrogen bonding between the ammonium groups and carboxylate anions (Table 1) defines a 2-D network comprising 6-membered rings (Fig. 3). Projection along the n-alkyl chains of the molecules reveals an approximately orthorhombic "subcell" with approximate dimensions 5.1 × 7.3 Å (the third dimension being the translation of ca 2.54 Å along the n-alkyl chain). The plane through the C atoms of the n-alkyl chain of each octanoate anion lies almost perpendicular to the planes of the n-alkyl chains of the ammonium cations (Fig. 4). This is a common subcell arrangement for long-chain n-alkyl compounds (Dorset, 2005). The distortion from planarity of the n-alkyl chain in the decylammonium cation serves to accommodate it between two neighbouring octanoic acid molecules [symmetry codes: 1 + x,0.5 - y,-1/2 + z and 1 + x,0.5 - y,1/2 + z], optimizing dispersion interactions along the length of the n-alkyl chains within the constraints imposed by the hydrogen-bonding geometry. At the interface between layers (i.e. in the (020) planes of the structure) the methyl groups of the decylammonium cations meet the methyl groups of the octanoate anions to form C···C contacts of 3.972 (4) Å, with the H atoms approximately eclipsed.

Related literature top

For background literature concerning compounds of alkyl carboxylic acids and primary alkyl amines, see: Backlund et al. (1994, 1997); Karlsson et al. (2000, 2001); Kohler et al. (1972); Kohler, Atrops, et al. (1981); Kohler, Gopal, et al. (1981). For a description of the `subcell' associated with the packing of the n-alkyl chains, see: Dorset (2005).

Experimental top

Octanoic acid (99%) and decylamine (99.5%) were obtained from Sigma Aldrich and used without further purification. A number of solution and melt methods were attempted to grow a single-crystal of sufficient dimensions and quality, but all were unsuccessful. A crystal was finally obtained serendipidously by growth from the vapour when poorly sealed vessels containing each of the individual components were stored together inside a small container (1 litre volume) in a glove bag initially purged with N2 and left undisturbed for a number of weeks. Crystal growth was observed on most of the plastic surfaces inside the storage container but principally on the polypropylene cap of the decylamine bottle. Elemental analysis found for the bulk sample: C 72.4, H 13.1, N, 4.8%; calculated C 71.7, H 13.0, N 4.7%.

Refinement top

The crystal diffracted relatively weakly, and data were collected to a maximum θ of 22° (0.95 Å resolution). Approximately 65% of data were observed at the 2σ level to this limit. The data are adequate to support location and refinement of the H atoms associated with the ammonium group. These were refined with N—H distances restrained to 0.91 (1) Å, and with individual Uiso values refined in the range 0.061 (10)–0.064 (10) Å2. All other H atoms were placed geometrically and refined as riding with C—H = 0.99 (CH2) or 0.98 (CH3) Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Projection along the c axis showing the layered structure. H atoms are omitted and the N atoms of the NH3+ groups are highlighted as spheres.
[Figure 3] Fig. 3. Section of the structure projected along the c axis, showing the hydrogen-bond topology (dashed lines). Only the C—CO2- and C—NH3+ groups are shown. All other C and H atoms are omitted.
[Figure 4] Fig. 4. Section of the structure projected approximately along the long axes of the n-alkyl chains, showing the orthorhombic "subcell" packing. The dimensions indicated for the subcell are approximate. The third dimension of the subcell refers to the translational repeat of ca 2.54 Å along the n-alkyl chain. See Dorset (2005).
Decylammonium octanoate top
Crystal data top
C10H24N+·C8H15O2F(000) = 680
Mr = 301.50Dx = 1.020 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29938 reflections
a = 5.5526 (2) Åθ = 1.0–22.0°
b = 44.489 (2) ŵ = 0.06 mm1
c = 8.0931 (4) ÅT = 180 K
β = 100.788 (3)°Block, colourless
V = 1963.90 (15) Å30.35 × 0.18 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1438 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
ω and ϕ scansθmax = 22.0°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 55
Tmin = 0.773, Tmax = 1.000k = 4646
5524 measured reflectionsl = 88
2233 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.13 e Å3
3 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H24N+·C8H15O2V = 1963.90 (15) Å3
Mr = 301.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5526 (2) ŵ = 0.06 mm1
b = 44.489 (2) ÅT = 180 K
c = 8.0931 (4) Å0.35 × 0.18 × 0.02 mm
β = 100.788 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2233 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1438 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 1.000Rint = 0.053
5524 measured reflectionsθmax = 22.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.13 e Å3
2233 reflectionsΔρmin = 0.17 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6509 (4)0.23800 (6)0.6408 (3)0.0368 (6)
H1A0.797 (3)0.2475 (6)0.635 (3)0.064 (10)*
H1B0.552 (4)0.2520 (5)0.681 (3)0.061 (10)*
H1C0.564 (4)0.2308 (6)0.540 (2)0.063 (10)*
C10.7131 (5)0.21366 (6)0.7683 (3)0.0376 (7)
H1D0.78890.22260.87760.045*
H1E0.83460.20000.73300.045*
C20.4907 (5)0.19598 (6)0.7896 (3)0.0443 (8)
H2A0.41280.18750.67940.053*
H2B0.37120.20970.82710.053*
C30.5494 (5)0.17059 (6)0.9156 (3)0.0453 (8)
H3A0.69100.15910.89020.054*
H3B0.59840.17931.02960.054*
C40.3373 (5)0.14915 (6)0.9157 (3)0.0479 (8)
H4A0.19910.16060.94650.057*
H4B0.28270.14150.79990.057*
C50.3925 (5)0.12257 (7)1.0335 (3)0.0469 (8)
H5A0.43590.13011.15040.056*
H5B0.53690.11181.00770.056*
C60.1810 (5)0.10059 (6)1.0222 (3)0.0466 (8)
H6A0.03870.11131.05200.056*
H6B0.13350.09380.90420.056*
C70.2351 (5)0.07329 (7)1.1342 (4)0.0511 (8)
H7A0.29010.08011.25160.061*
H7B0.37250.06211.10090.061*
C80.0211 (5)0.05205 (6)1.1290 (4)0.0505 (8)
H8A0.11580.06331.16300.061*
H8B0.03450.04531.01140.061*
C90.0743 (6)0.02465 (7)1.2396 (4)0.0648 (10)
H9A0.13860.03131.35630.078*
H9B0.20440.01281.20150.078*
C100.1459 (6)0.00445 (7)1.2403 (4)0.0763 (11)
H10A0.09690.01281.31450.114*
H10B0.20860.00271.12580.114*
H10C0.27440.01581.28090.114*
O10.4243 (3)0.28030 (4)0.81491 (19)0.0384 (5)
O20.1023 (3)0.26380 (4)0.6328 (2)0.0424 (5)
C110.1952 (5)0.27876 (6)0.7601 (3)0.0333 (7)
C120.0316 (4)0.29610 (6)0.8566 (3)0.0358 (7)
H12A0.06470.28910.97480.043*
H12B0.14130.29120.80860.043*
C130.0628 (5)0.33012 (6)0.8553 (3)0.0368 (7)
H13A0.23450.33530.90500.044*
H13B0.02920.33740.73760.044*
C140.1081 (5)0.34575 (6)0.9533 (3)0.0400 (7)
H14A0.07330.33811.07020.048*
H14B0.27850.34000.90380.048*
C150.0940 (5)0.37981 (6)0.9594 (3)0.0419 (8)
H15A0.07490.38591.01100.050*
H15B0.12880.38770.84310.050*
C160.2713 (5)0.39370 (6)1.0579 (3)0.0447 (8)
H16A0.23940.38511.17280.054*
H16B0.44000.38791.00410.054*
C170.2585 (5)0.42763 (6)1.0715 (4)0.0527 (8)
H17A0.28780.43630.95680.063*
H17B0.09110.43351.12770.063*
C180.4416 (5)0.44107 (7)1.1682 (4)0.0704 (10)
H18A0.42330.46301.17210.106*
H18B0.41150.43301.28300.106*
H18C0.60840.43591.11190.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (15)0.0405 (16)0.0377 (16)0.0004 (14)0.0076 (13)0.0051 (14)
C10.0383 (16)0.0406 (18)0.0332 (15)0.0040 (15)0.0051 (12)0.0004 (15)
C20.0379 (17)0.051 (2)0.0441 (17)0.0020 (16)0.0070 (13)0.0085 (16)
C30.0410 (17)0.052 (2)0.0412 (17)0.0032 (16)0.0038 (14)0.0024 (16)
C40.0411 (17)0.059 (2)0.0427 (18)0.0047 (17)0.0053 (14)0.0068 (17)
C50.0435 (18)0.052 (2)0.0449 (17)0.0015 (16)0.0069 (14)0.0087 (17)
C60.0470 (18)0.048 (2)0.0448 (18)0.0012 (16)0.0081 (14)0.0064 (16)
C70.0499 (19)0.049 (2)0.0553 (19)0.0005 (16)0.0115 (15)0.0081 (17)
C80.0524 (19)0.045 (2)0.056 (2)0.0044 (17)0.0152 (15)0.0033 (17)
C90.067 (2)0.056 (2)0.076 (2)0.001 (2)0.0242 (18)0.013 (2)
C100.080 (3)0.057 (2)0.100 (3)0.010 (2)0.036 (2)0.007 (2)
O10.0247 (11)0.0510 (13)0.0390 (10)0.0009 (9)0.0048 (8)0.0016 (10)
O20.0360 (11)0.0542 (14)0.0364 (11)0.0062 (10)0.0049 (9)0.0129 (11)
C110.0300 (17)0.0360 (18)0.0349 (16)0.0013 (15)0.0084 (13)0.0116 (16)
C120.0306 (15)0.0392 (18)0.0381 (16)0.0013 (14)0.0080 (13)0.0008 (14)
C130.0333 (15)0.0378 (18)0.0392 (16)0.0006 (14)0.0065 (12)0.0036 (14)
C140.0389 (16)0.039 (2)0.0441 (16)0.0028 (15)0.0124 (13)0.0000 (15)
C150.0389 (17)0.041 (2)0.0472 (17)0.0004 (15)0.0105 (14)0.0029 (15)
C160.0452 (18)0.040 (2)0.0492 (18)0.0021 (16)0.0095 (14)0.0030 (16)
C170.0494 (19)0.045 (2)0.063 (2)0.0036 (17)0.0077 (16)0.0066 (17)
C180.065 (2)0.059 (2)0.088 (3)0.0103 (19)0.0179 (19)0.015 (2)
Geometric parameters (Å, º) top
N1—C11.491 (3)C9—H9A0.990
N1—H1A0.92 (1)C9—H9B0.990
N1—H1B0.93 (1)C10—H10A0.980
N1—H1C0.92 (1)C10—H10B0.980
C1—C21.501 (3)C10—H10C0.980
C1—H1D0.990O1—C111.268 (3)
C1—H1E0.990O2—C111.253 (3)
C2—C31.516 (3)C11—C121.515 (3)
C2—H2A0.990C12—C131.524 (3)
C2—H2B0.990C12—H12A0.990
C3—C41.516 (3)C12—H12B0.990
C3—H3A0.990C13—C141.515 (3)
C3—H3B0.990C13—H13A0.990
C4—C51.514 (4)C13—H13B0.990
C4—H4A0.990C14—C151.517 (3)
C4—H4B0.990C14—H14A0.990
C5—C61.518 (3)C14—H14B0.990
C5—H5A0.990C15—C161.510 (3)
C5—H5B0.990C15—H15A0.990
C6—C71.511 (4)C15—H15B0.990
C6—H6A0.990C16—C171.514 (4)
C6—H6B0.990C16—H16A0.990
C7—C81.513 (4)C16—H16B0.990
C7—H7A0.990C17—C181.517 (4)
C7—H7B0.990C17—H17A0.990
C8—C91.508 (4)C17—H17B0.990
C8—H8A0.990C18—H18A0.980
C8—H8B0.990C18—H18B0.980
C9—C101.518 (4)C18—H18C0.980
C1—N1—H1A105.9 (17)C8—C9—H9B108.7
C1—N1—H1B108.7 (18)C10—C9—H9B108.7
H1A—N1—H1B107 (3)H9A—C9—H9B107.6
C1—N1—H1C111.8 (18)C9—C10—H10A109.5
H1A—N1—H1C116 (2)C18i—C10—H10A53.7
H1B—N1—H1C107 (2)C9—C10—H10B109.5
N1—C1—C2111.8 (2)C18i—C10—H10B79.7
N1—C1—H1D109.3H10A—C10—H10B109.5
C2—C1—H1D109.3C9—C10—H10C109.5
N1—C1—H1E109.3H10A—C10—H10C109.5
C2—C1—H1E109.3H10B—C10—H10C109.5
H1D—C1—H1E107.9O2—C11—O1123.2 (2)
C1—C2—C3112.9 (2)O2—C11—C12120.0 (2)
C1—C2—H2A109.0O1—C11—C12116.8 (3)
C3—C2—H2A109.0C11—C12—C13115.0 (2)
C1—C2—H2B109.0C11—C12—H12A108.5
C3—C2—H2B109.0C13—C12—H12A108.5
H2A—C2—H2B107.8C11—C12—H12B108.5
C4—C3—C2113.6 (2)C13—C12—H12B108.5
C4—C3—H3A108.9H12A—C12—H12B107.5
C2—C3—H3A108.9C14—C13—C12111.7 (2)
C4—C3—H3B108.9C14—C13—H13A109.3
C2—C3—H3B108.9C12—C13—H13A109.3
H3A—C3—H3B107.7C14—C13—H13B109.3
C5—C4—C3115.2 (2)C12—C13—H13B109.3
C5—C4—H4A108.5H13A—C13—H13B107.9
C3—C4—H4A108.5C13—C14—C15116.2 (2)
C5—C4—H4B108.5C13—C14—H14A108.2
C3—C4—H4B108.5C15—C14—H14A108.2
H4A—C4—H4B107.5C13—C14—H14B108.2
C4—C5—C6113.7 (2)C15—C14—H14B108.2
C4—C5—H5A108.8H14A—C14—H14B107.4
C6—C5—H5A108.8C16—C15—C14113.0 (2)
C4—C5—H5B108.8C16—C15—H15A109.0
C6—C5—H5B108.8C14—C15—H15A109.0
H5A—C5—H5B107.7C16—C15—H15B109.0
C7—C6—C5114.6 (2)C14—C15—H15B109.0
C7—C6—H6A108.6H15A—C15—H15B107.8
C5—C6—H6A108.6C15—C16—C17114.8 (2)
C7—C6—H6B108.6C15—C16—H16A108.6
C5—C6—H6B108.6C17—C16—H16A108.6
H6A—C6—H6B107.6C15—C16—H16B108.6
C6—C7—C8114.7 (2)C17—C16—H16B108.6
C6—C7—H7A108.6H16A—C16—H16B107.5
C8—C7—H7A108.6C16—C17—C18113.8 (2)
C6—C7—H7B108.6C16—C17—H17A108.8
C8—C7—H7B108.6C18—C17—H17A108.8
H7A—C7—H7B107.6C16—C17—H17B108.8
C9—C8—C7115.0 (2)C18—C17—H17B108.8
C9—C8—H8A108.5H17A—C17—H17B107.7
C7—C8—H8A108.5C17—C18—H18A109.5
C9—C8—H8B108.5C17—C18—H18B109.5
C7—C8—H8B108.5H18A—C18—H18B109.5
H8A—C8—H8B107.5C17—C18—H18C109.5
C8—C9—C10114.3 (3)H18A—C18—H18C109.5
C8—C9—H9A108.7H18B—C18—H18C109.5
C10—C9—H9A108.7
N1—C1—C2—C3178.6 (2)O2—C11—C12—C13115.7 (3)
C1—C2—C3—C4169.5 (2)O1—C11—C12—C1364.4 (3)
C2—C3—C4—C5177.0 (2)C11—C12—C13—C14179.6 (2)
C3—C4—C5—C6176.4 (2)C12—C13—C14—C15179.6 (2)
C4—C5—C6—C7177.9 (2)C13—C14—C15—C16179.4 (2)
C5—C6—C7—C8177.4 (2)C14—C15—C16—C17178.3 (2)
C6—C7—C8—C9179.6 (2)C15—C16—C17—C18178.9 (2)
C7—C8—C9—C10176.8 (3)
Symmetry code: (i) x1, y1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.93 (1)1.89 (1)2.788 (3)164 (2)
N1—H1C···O1ii0.92 (1)1.91 (1)2.821 (3)170 (2)
N1—H1A···O2iii0.92 (1)1.85 (1)2.768 (3)175 (3)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H24N+·C8H15O2
Mr301.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)5.5526 (2), 44.489 (2), 8.0931 (4)
β (°) 100.788 (3)
V3)1963.90 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.35 × 0.18 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.773, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5524, 2233, 1438
Rint0.053
θmax (°)22.0
(sin θ/λ)max1)0.526
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.02
No. of reflections2233
No. of parameters202
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.93 (1)1.89 (1)2.788 (3)164 (2)
N1—H1C···O1i0.92 (1)1.91 (1)2.821 (3)170 (2)
N1—H1A···O2ii0.92 (1)1.85 (1)2.768 (3)175 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

We thank the Department of Chemistry and the BP Institute for financial and technical assistance, and Dr John E. Davies for collecting the X-ray data.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBacklund, S., Friman, R. & Karlsson, S. (1997). Colloids Surf. A, 123, 125–133.  CrossRef Google Scholar
First citationBacklund, S., Karlsson, S. & Sjoblom, J. (1994). J. Dispersion Sci. Technol. 15, 561–573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDorset, D. L. (2005). Crystallography of the Polymethylene Chain. IUCr Monograph on Crystallography 17. Oxford University Press.  Google Scholar
First citationKarlsson, S., Backlund, S. & Friman, R. (2000). Colloid Polym. Sci. 278, 8–14.  Web of Science CrossRef CAS Google Scholar
First citationKarlsson, S., Friman, R., Lindstrom, B. & Backlund, S. (2001). J. Colloid Interface Sci. 243, 241–247.  Web of Science CrossRef CAS Google Scholar
First citationKohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. & Salamon, T. (1981). J. Phys. Chem. 85, 2520–2524.  CrossRef CAS Web of Science Google Scholar
First citationKohler, F., Gopal, R., Gotze, G., Atrops, H., Demiriz, M. A., Liebermann, E., Wilhelm, E., Ratkovics, F. & Palagy, B. (1981). J. Phys. Chem. 85, 2524–2529.  CrossRef CAS Web of Science Google Scholar
First citationKohler, F., Miksch, G., Kainz, C. & Liebermann, E. (1972). J. Phys. Chem. 76, 2764–2768.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds