organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1H-Imidazo[4,5-f][1,10]phenan­throlin-2-yl)naphthalen-2-ol

aCollege of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China, and Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, People's Republic of China
*Correspondence e-mail: wangxiuyan2001@yahoo.com.cn

(Received 8 February 2011; accepted 16 February 2011; online 26 February 2011)

In the title mol­ecule, C23H14N4O, the dihedral angle between the pyridine rings of the phenanthroline unit is 4.43 (8)° and the dihedral angle formed by the nine essentially planar [maximum deviation 0.0389 (16)Å] non-H atoms of the benzimidazole unit and the naphthalene ring system is 74.22 (5)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the coordination chemistry of 1,10-phenanthroline derivatives, see: Wang et al. (2010[Wang, X. Y., Ma, X. Y., Liu, Y., Xu, Z. L. & Kong, Z. G. (2010). Chin. J. Inorg. Chem. 26, 1482-1484.]). For the synthetic procedure, see: Steck & Day (1943[Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.]).

[Scheme 1]

Experimental

Crystal data
  • C23H14N4O

  • Mr = 362.38

  • Tetragonal, I 41 c d

  • a = 22.5800 (4) Å

  • c = 13.7196 (5) Å

  • V = 6995.0 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.21 × 0.18 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.41, Tmax = 0.72

  • 18374 measured reflections

  • 3433 independent reflections

  • 3153 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.06

  • 3433 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1629 Friedel pairs

  • Flack parameter: 0.0 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.86 2.17 2.9361 (19) 149
N4—H4⋯N1i 0.86 2.50 3.191 (2) 138
O1—H1⋯N3ii 0.82 2.01 2.7203 (17) 145
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [y, -x+{\script{1\over 2}}, z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-Phenanthroline and its derivatives, are potentially important chelating ligands with excellent coordinating abilities and have been extensively used to build supramolecular architectures (Wang et al., 2010). We report herein the synthesis and crystal structure of the title compound

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the pyridine rings of the phenanthroline unit [N2/C4-C8 and N1/C1/C2/C3/C11/C23] is 4.43 (8)Å and the dihedral angle formed by the nine essentially planar non-hydrogen atoms of the benzimidazole unit [C3/C4/C8-C12; maximum deviation 0.0389 (16)Å for C4] and the naphthalene ring system is 74.22 (5)°. In the crystal, molecules are linked by intermolecular N—H···N and O—H···N hydrogen bonds to form a three-dimensional network.

Related literature top

For background to the coordination chemistry of 1,10-phenanthroline derivatives, see: Wang et al. (2010). For the synthetic procedure, see: Steck & Day (1943).

Experimental top

The title compound was synthesized according to the literature method of Steck & Day (1943). We carried out the following reaction but the unreacted title compound was found in the reaction vessel. A mixture of Bi(NO3)3.5H2O (0.5 mmol) and L (0.5 mmol) in 10 mL distilled water was heated at 463 K in a Teflon-lined stainless steel autoclave for three days. The reaction system was then slowly cooled to room temperature. Pale yellow crystals suitable for single crystal X-ray diffraction analysis were collected from the final reaction system.

Refinement top

All H atoms were positioned geometrically (N—H = 0.86, C—H = 0.93 and O—H = 0.82 Å ) and refined as riding, with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of of the title compound showing displacement ellipsoids drawn at the 30% probability.
1-(1H-Imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol top
Crystal data top
C23H14N4ODx = 1.376 Mg m3
Mr = 362.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 3433 reflections
Hall symbol: I 4bw -2cθ = 1.8–26.0°
a = 22.5800 (4) ŵ = 0.09 mm1
c = 13.7196 (5) ÅT = 293 K
V = 6995.0 (3) Å3Block, pale yellow
Z = 160.30 × 0.21 × 0.18 mm
F(000) = 3008
Data collection top
Bruker APEX
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube3153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.41, Tmax = 0.72k = 2720
18374 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0457P)2 + 1.1603P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3433 reflectionsΔρmax = 0.12 e Å3
253 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 1629 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (13)
Crystal data top
C23H14N4OZ = 16
Mr = 362.38Mo Kα radiation
Tetragonal, I41cdµ = 0.09 mm1
a = 22.5800 (4) ÅT = 293 K
c = 13.7196 (5) Å0.30 × 0.21 × 0.18 mm
V = 6995.0 (3) Å3
Data collection top
Bruker APEX
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3153 reflections with I > 2σ(I)
Tmin = 0.41, Tmax = 0.72Rint = 0.022
18374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.12 e Å3
S = 1.06Δρmin = 0.14 e Å3
3433 reflectionsAbsolute structure: Flack (1983), 1629 Friedel pairs
253 parametersAbsolute structure parameter: 0.0 (13)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.15231 (6)0.04557 (6)0.26423 (9)0.0422 (3)
H40.13450.02240.30450.051*
O10.15580 (7)0.17926 (6)0.40232 (9)0.0690 (4)
H10.14660.20490.44180.104*
N10.14620 (7)0.08057 (7)0.13144 (9)0.0534 (4)
C140.19348 (7)0.14069 (7)0.44439 (12)0.0468 (4)
N20.08332 (6)0.01202 (7)0.06297 (11)0.0569 (4)
C40.11269 (7)0.02173 (7)0.00293 (11)0.0442 (4)
C120.19309 (6)0.08738 (6)0.28685 (10)0.0389 (3)
N30.21230 (5)0.11616 (5)0.20892 (9)0.0398 (3)
C110.18392 (7)0.10501 (6)0.02914 (10)0.0386 (3)
C30.14849 (6)0.07058 (7)0.03403 (10)0.0421 (3)
C180.25212 (6)0.05078 (7)0.42951 (11)0.0437 (3)
C130.21381 (7)0.09461 (7)0.38867 (11)0.0410 (3)
C200.31013 (8)0.03905 (8)0.41619 (17)0.0641 (5)
H200.32380.07070.37910.077*
C90.14476 (6)0.04705 (6)0.16521 (10)0.0390 (3)
C10.21610 (9)0.15939 (8)0.11023 (13)0.0585 (5)
H1A0.23890.18890.13910.070*
C190.27385 (7)0.00224 (8)0.37510 (13)0.0516 (4)
H190.26320.00160.30990.062*
C210.30698 (8)0.01212 (10)0.56875 (15)0.0677 (6)
H210.31850.01510.63370.081*
C150.21017 (8)0.14513 (9)0.54344 (13)0.0576 (4)
H150.19610.17620.58150.069*
C80.10968 (7)0.01000 (7)0.10380 (11)0.0422 (3)
C100.18153 (6)0.09101 (6)0.13142 (10)0.0373 (3)
C70.07478 (8)0.03699 (8)0.13643 (14)0.0582 (4)
H70.07210.04580.20250.070*
C170.26900 (7)0.05588 (8)0.52860 (13)0.0516 (4)
C20.17893 (9)0.12442 (9)0.16609 (13)0.0613 (5)
H20.17680.13230.23250.074*
C160.24695 (8)0.10373 (10)0.58300 (13)0.0601 (5)
H160.25780.10730.64810.072*
C50.05054 (10)0.05570 (10)0.02947 (17)0.0720 (6)
H50.03000.07870.07440.086*
C60.04461 (9)0.06976 (9)0.06877 (17)0.0729 (6)
H60.02050.10100.08820.087*
C230.21879 (8)0.14991 (7)0.01156 (12)0.0473 (4)
H230.24330.17290.02760.057*
C220.32682 (9)0.03397 (10)0.51413 (19)0.0726 (6)
H220.35160.06230.54190.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0482 (7)0.0475 (7)0.0308 (6)0.0029 (6)0.0025 (5)0.0074 (5)
O10.0956 (10)0.0655 (8)0.0461 (7)0.0325 (7)0.0183 (7)0.0127 (6)
N10.0634 (9)0.0683 (9)0.0286 (6)0.0102 (7)0.0019 (6)0.0026 (6)
C140.0506 (8)0.0539 (9)0.0358 (8)0.0075 (7)0.0057 (7)0.0015 (7)
N20.0590 (8)0.0651 (9)0.0467 (8)0.0034 (7)0.0024 (7)0.0196 (7)
C40.0427 (8)0.0511 (9)0.0387 (8)0.0058 (7)0.0031 (6)0.0095 (7)
C120.0418 (7)0.0431 (7)0.0318 (7)0.0050 (6)0.0003 (6)0.0024 (6)
N30.0430 (6)0.0443 (6)0.0321 (6)0.0014 (5)0.0008 (5)0.0029 (5)
C110.0424 (7)0.0433 (8)0.0303 (7)0.0072 (6)0.0043 (6)0.0024 (6)
C30.0438 (8)0.0503 (8)0.0321 (8)0.0092 (6)0.0043 (6)0.0041 (6)
C180.0381 (7)0.0521 (8)0.0409 (8)0.0018 (6)0.0005 (6)0.0117 (7)
C130.0442 (8)0.0489 (8)0.0299 (7)0.0002 (6)0.0014 (6)0.0058 (6)
C200.0497 (9)0.0542 (10)0.0883 (15)0.0043 (7)0.0029 (10)0.0120 (10)
C90.0421 (7)0.0444 (8)0.0304 (7)0.0022 (6)0.0033 (6)0.0036 (6)
C10.0691 (11)0.0645 (11)0.0417 (9)0.0023 (8)0.0123 (8)0.0152 (8)
C190.0458 (8)0.0523 (9)0.0566 (10)0.0011 (7)0.0016 (7)0.0069 (8)
C210.0561 (10)0.0880 (15)0.0590 (11)0.0003 (10)0.0157 (9)0.0290 (10)
C150.0649 (10)0.0704 (11)0.0375 (9)0.0043 (8)0.0026 (8)0.0084 (8)
C80.0417 (8)0.0443 (8)0.0405 (8)0.0017 (6)0.0039 (6)0.0036 (6)
C100.0398 (7)0.0424 (8)0.0297 (7)0.0029 (6)0.0016 (6)0.0008 (6)
C70.0633 (11)0.0557 (10)0.0557 (11)0.0100 (8)0.0084 (8)0.0002 (8)
C170.0441 (8)0.0673 (10)0.0433 (9)0.0035 (7)0.0061 (7)0.0154 (8)
C20.0767 (12)0.0770 (12)0.0302 (8)0.0113 (10)0.0063 (8)0.0087 (8)
C160.0627 (10)0.0864 (13)0.0314 (7)0.0018 (10)0.0115 (8)0.0070 (8)
C50.0764 (13)0.0718 (12)0.0679 (13)0.0183 (10)0.0033 (11)0.0268 (11)
C60.0809 (13)0.0620 (12)0.0756 (15)0.0267 (10)0.0108 (11)0.0115 (10)
C230.0529 (9)0.0505 (9)0.0387 (8)0.0023 (7)0.0061 (7)0.0043 (7)
C220.0569 (11)0.0678 (13)0.0932 (16)0.0089 (9)0.0099 (11)0.0312 (12)
Geometric parameters (Å, º) top
N4—C121.3548 (19)C20—H200.9300
N4—C91.3697 (19)C9—C101.375 (2)
N4—H40.8600C9—C81.427 (2)
O1—C141.3476 (18)C1—C231.372 (2)
O1—H10.8200C1—C21.384 (3)
N1—C21.324 (2)C1—H1A0.9300
N1—C31.3563 (19)C19—H190.9300
C14—C131.370 (2)C21—C221.358 (3)
C14—C151.414 (2)C21—C171.420 (2)
N2—C51.316 (3)C21—H210.9300
N2—C41.356 (2)C15—C161.363 (3)
C4—C81.411 (2)C15—H150.9300
C4—C31.459 (2)C8—C71.395 (2)
C12—N31.3241 (18)C7—C61.369 (3)
C12—C131.482 (2)C7—H70.9300
N3—C101.3912 (19)C17—C161.404 (3)
C11—C231.400 (2)C2—H20.9300
C11—C31.413 (2)C16—H160.9300
C11—C101.4394 (19)C5—C61.391 (3)
C18—C191.414 (2)C5—H50.9300
C18—C171.417 (2)C6—H60.9300
C18—C131.429 (2)C23—H230.9300
C20—C191.363 (3)C22—H220.9300
C20—C221.400 (3)
C12—N4—C9107.15 (12)C20—C19—H19119.3
C12—N4—H4126.4C18—C19—H19119.3
C9—N4—H4126.4C22—C21—C17121.23 (19)
C14—O1—H1109.5C22—C21—H21119.4
C2—N1—C3117.19 (16)C17—C21—H21119.4
O1—C14—C13117.60 (14)C16—C15—C14119.76 (17)
O1—C14—C15122.28 (14)C16—C15—H15120.1
C13—C14—C15120.07 (14)C14—C15—H15120.1
C5—N2—C4117.62 (16)C7—C8—C4118.98 (16)
N2—C4—C8121.68 (15)C7—C8—C9124.73 (15)
N2—C4—C3117.67 (14)C4—C8—C9116.26 (14)
C8—C4—C3120.64 (14)C9—C10—N3109.79 (12)
N3—C12—N4112.31 (13)C9—C10—C11120.66 (13)
N3—C12—C13127.13 (13)N3—C10—C11129.55 (13)
N4—C12—C13120.47 (13)C6—C7—C8118.34 (18)
C12—N3—C10104.67 (11)C6—C7—H7120.8
C23—C11—C3118.18 (14)C8—C7—H7120.8
C23—C11—C10124.68 (14)C16—C17—C18118.50 (15)
C3—C11—C10117.14 (13)C16—C17—C21122.93 (18)
N1—C3—C11122.32 (15)C18—C17—C21118.57 (18)
N1—C3—C4116.56 (14)N1—C2—C1124.50 (16)
C11—C3—C4121.11 (13)N1—C2—H2117.8
C19—C18—C17118.45 (15)C1—C2—H2117.8
C19—C18—C13122.67 (14)C15—C16—C17122.14 (16)
C17—C18—C13118.88 (15)C15—C16—H16118.9
C14—C13—C18120.65 (14)C17—C16—H16118.9
C14—C13—C12120.25 (13)N2—C5—C6124.30 (18)
C18—C13—C12118.97 (14)N2—C5—H5117.9
C19—C20—C22120.18 (19)C6—C5—H5117.9
C19—C20—H20119.9C7—C6—C5119.06 (18)
C22—C20—H20119.9C7—C6—H6120.5
N4—C9—C10106.07 (13)C5—C6—H6120.5
N4—C9—C8129.82 (13)C1—C23—C11118.80 (17)
C10—C9—C8124.02 (13)C1—C23—H23120.6
C23—C1—C2118.97 (17)C11—C23—H23120.6
C23—C1—H1A120.5C21—C22—C20120.22 (17)
C2—C1—H1A120.5C21—C22—H22119.9
C20—C19—C18121.35 (17)C20—C22—H22119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.862.172.9361 (19)149
N4—H4···N1i0.862.503.191 (2)138
O1—H1···N3ii0.822.012.7203 (17)145
Symmetry codes: (i) x, y, z+1/2; (ii) y, x+1/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC23H14N4O
Mr362.38
Crystal system, space groupTetragonal, I41cd
Temperature (K)293
a, c (Å)22.5800 (4), 13.7196 (5)
V3)6995.0 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.21 × 0.18
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.41, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
18374, 3433, 3153
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.06
No. of reflections3433
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14
Absolute structureFlack (1983), 1629 Friedel pairs
Absolute structure parameter0.0 (13)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.862.172.9361 (19)149
N4—H4···N1i0.862.503.191 (2)138
O1—H1···N3ii0.822.012.7203 (17)145
Symmetry codes: (i) x, y, z+1/2; (ii) y, x+1/2, z+1/4.
 

Acknowledgements

The authors thank the Key Laboratory of Preparation and Applications of Environmentally Friendly Materials and the Institute Foundation of Siping City (No. 2009011) for supporting this work.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452–456.  CrossRef CAS Google Scholar
First citationWang, X. Y., Ma, X. Y., Liu, Y., Xu, Z. L. & Kong, Z. G. (2010). Chin. J. Inorg. Chem. 26, 1482–1484.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds