organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methanaminium 3,4,5,6-tetra­chloro-2-(meth­­oxy­carbon­yl)benzoate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 22 January 2011; accepted 5 February 2011; online 12 February 2011)

In the crystal structure of the title compound, CH6N+·C9H3Cl4O4, the N atom of the methyl­amine mol­ecule is protonated and hydrogen bonded to the carboxyl group of the 3,4,5,6-tetra­chloro-2-(meth­oxy­carbon­yl)benzoate anion. The anions are linked by the cations via inter­molecular N—H⋯O inter­actions into chains extending along the c axis.

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N+·C9H3Cl4O4

  • Mr = 348.98

  • Monoclinic, P 21 /c

  • a = 14.3138 (13) Å

  • b = 14.2231 (14) Å

  • c = 6.7648 (7) Å

  • β = 91.021 (1)°

  • V = 1377.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 298 K

  • 0.45 × 0.40 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.697, Tmax = 0.734

  • 6756 measured reflections

  • 2413 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.06

  • 2413 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 1.86 2.742 (3) 173
N1—H1B⋯O4ii 0.89 1.93 2.794 (3) 163
N1—H1C⋯O4 0.89 1.92 2.797 (3) 170
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystals of the title compound were obtained by accident by the reaction of 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid and methanamine in methanol. To identify the product of this reaction a single crystal structure analysis was performed.

The asymmetric unit of the title compound (I) contains one methylammonium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoate anion (Fig. 1). The bond lengths and angles are in agreement with those in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal structure the cations and anions are connected by intermolecular N—H···O hydrogen bonding into chains that elongate in the direction of the crystallographic c-axis (Fig. 2). Moreover, short distances between chlorine and oxygen atoms are found indicating for intermolecular Cl—O interactions (Fig. 2).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Afterwards methanamine (0.45 g, 0.01 mol) was added and the mixture was stirred for 10 min at room temperature. The solution was kept at room temperature for 5 d. On solvent evaporation colourless single crystals of the title compound were obtained that are suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.96–0.97 Å, N—H = 0.89 Å, O—H = 0.82Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelling and 30% probability ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the c axis. Hydrogen bonding and Cl···O interactions are shown as dashed lines.
Methanaminium 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate top
Crystal data top
CH6N+·C9H3Cl4O4F(000) = 704
Mr = 348.98Dx = 1.683 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3138 (13) ÅCell parameters from 2427 reflections
b = 14.2231 (14) Åθ = 2.9–27.9°
c = 6.7648 (7) ŵ = 0.87 mm1
β = 91.021 (1)°T = 298 K
V = 1377.0 (2) Å3Block, colorless
Z = 40.45 × 0.40 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2413 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1017
Tmin = 0.697, Tmax = 0.734k = 1615
6756 measured reflectionsl = 87
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.036P)2 + 0.764P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2413 reflectionsΔρmax = 0.27 e Å3
176 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0169 (12)
Crystal data top
CH6N+·C9H3Cl4O4V = 1377.0 (2) Å3
Mr = 348.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3138 (13) ŵ = 0.87 mm1
b = 14.2231 (14) ÅT = 298 K
c = 6.7648 (7) Å0.45 × 0.40 × 0.38 mm
β = 91.021 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2413 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1752 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.734Rint = 0.034
6756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2413 reflectionsΔρmin = 0.26 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59548 (5)0.44954 (5)0.68418 (11)0.0403 (2)
Cl20.75122 (6)0.31368 (5)0.83762 (13)0.0504 (3)
Cl30.94431 (6)0.31160 (6)0.64018 (14)0.0560 (3)
Cl40.97935 (5)0.43587 (5)0.26682 (13)0.0498 (3)
N10.56810 (18)0.82381 (16)0.3492 (4)0.0405 (6)
H1A0.58780.86000.44890.061*
H1B0.59500.84220.23820.061*
H1C0.58320.76420.37430.061*
O10.82037 (15)0.65000 (13)0.1792 (3)0.0405 (5)
O20.8307 (2)0.52896 (16)0.0279 (3)0.0647 (7)
O30.61656 (15)0.57063 (15)0.1743 (3)0.0481 (6)
O40.62782 (14)0.64439 (13)0.4641 (3)0.0408 (5)
C10.82003 (19)0.5598 (2)0.1337 (4)0.0345 (7)
C20.64751 (19)0.58072 (18)0.3451 (4)0.0303 (6)
C30.80417 (19)0.50129 (17)0.3163 (4)0.0282 (6)
C40.71960 (19)0.50884 (17)0.4148 (4)0.0269 (6)
C50.70398 (18)0.44908 (17)0.5740 (4)0.0274 (6)
C60.77229 (19)0.38691 (18)0.6410 (4)0.0303 (6)
C70.85805 (19)0.38385 (18)0.5494 (4)0.0325 (7)
C80.87294 (19)0.43961 (18)0.3837 (4)0.0327 (7)
C90.8303 (3)0.7137 (2)0.0141 (5)0.0592 (10)
H9A0.88730.70010.05280.089*
H9B0.83190.77730.06170.089*
H9C0.77830.70610.07600.089*
C100.4658 (2)0.8321 (2)0.3267 (5)0.0543 (9)
H10A0.43670.81270.44680.082*
H10B0.44440.79280.21970.082*
H10C0.44950.89630.29880.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0319 (4)0.0426 (4)0.0470 (5)0.0041 (3)0.0120 (3)0.0124 (3)
Cl20.0489 (5)0.0470 (5)0.0554 (5)0.0046 (4)0.0012 (4)0.0251 (4)
Cl30.0397 (5)0.0524 (5)0.0758 (6)0.0189 (4)0.0053 (4)0.0093 (4)
Cl40.0323 (4)0.0515 (5)0.0660 (6)0.0021 (4)0.0166 (4)0.0093 (4)
N10.0551 (17)0.0323 (13)0.0341 (14)0.0043 (12)0.0040 (12)0.0006 (11)
O10.0548 (14)0.0320 (11)0.0350 (11)0.0030 (10)0.0087 (10)0.0036 (9)
O20.097 (2)0.0604 (15)0.0369 (14)0.0146 (14)0.0208 (13)0.0099 (11)
O30.0471 (13)0.0616 (14)0.0352 (12)0.0050 (11)0.0105 (10)0.0095 (10)
O40.0451 (13)0.0313 (11)0.0462 (13)0.0112 (9)0.0059 (10)0.0040 (9)
C10.0297 (16)0.0423 (17)0.0317 (17)0.0031 (13)0.0049 (13)0.0011 (13)
C20.0264 (15)0.0295 (15)0.0352 (17)0.0005 (12)0.0043 (13)0.0089 (13)
C30.0310 (15)0.0240 (13)0.0295 (15)0.0035 (12)0.0012 (12)0.0042 (11)
C40.0284 (15)0.0263 (14)0.0261 (14)0.0004 (12)0.0011 (12)0.0018 (11)
C50.0226 (14)0.0283 (14)0.0314 (15)0.0005 (12)0.0022 (12)0.0028 (12)
C60.0341 (16)0.0252 (14)0.0315 (15)0.0017 (12)0.0027 (13)0.0011 (11)
C70.0260 (15)0.0258 (14)0.0454 (17)0.0046 (12)0.0043 (13)0.0050 (12)
C80.0296 (15)0.0294 (14)0.0391 (17)0.0011 (12)0.0060 (13)0.0095 (13)
C90.074 (3)0.051 (2)0.054 (2)0.0026 (19)0.0147 (19)0.0210 (17)
C100.055 (2)0.054 (2)0.053 (2)0.0031 (17)0.0051 (18)0.0001 (16)
Geometric parameters (Å, º) top
Cl1—C51.734 (3)C2—C41.521 (4)
Cl2—C61.720 (3)C3—C81.389 (4)
Cl3—C71.712 (3)C3—C41.396 (4)
Cl4—C81.729 (3)C4—C51.393 (4)
N1—C101.475 (4)C5—C61.388 (4)
N1—H1A0.8900C6—C71.386 (4)
N1—H1B0.8900C7—C81.393 (4)
N1—H1C0.8900C9—H9A0.9600
O1—C11.319 (3)C9—H9B0.9600
O1—C91.447 (3)C9—H9C0.9600
O2—C11.191 (3)C10—H10A0.9600
O3—C21.238 (3)C10—H10B0.9600
O4—C21.247 (3)C10—H10C0.9600
C1—C31.510 (4)
C10—N1—H1A109.5C7—C6—C5119.9 (2)
C10—N1—H1B109.5C7—C6—Cl2119.7 (2)
H1A—N1—H1B109.5C5—C6—Cl2120.4 (2)
C10—N1—H1C109.5C6—C7—C8119.5 (3)
H1A—N1—H1C109.5C6—C7—Cl3119.8 (2)
H1B—N1—H1C109.5C8—C7—Cl3120.7 (2)
C1—O1—C9115.4 (2)C3—C8—C7120.4 (2)
O2—C1—O1124.9 (3)C3—C8—Cl4119.6 (2)
O2—C1—C3124.9 (3)C7—C8—Cl4119.9 (2)
O1—C1—C3110.2 (2)O1—C9—H9A109.5
O3—C2—O4127.2 (3)O1—C9—H9B109.5
O3—C2—C4116.1 (2)H9A—C9—H9B109.5
O4—C2—C4116.6 (2)O1—C9—H9C109.5
C8—C3—C4120.5 (2)H9A—C9—H9C109.5
C8—C3—C1120.0 (2)H9B—C9—H9C109.5
C4—C3—C1119.5 (2)N1—C10—H10A109.5
C5—C4—C3118.3 (2)N1—C10—H10B109.5
C5—C4—C2122.1 (2)H10A—C10—H10B109.5
C3—C4—C2119.5 (2)N1—C10—H10C109.5
C6—C5—C4121.3 (2)H10A—C10—H10C109.5
C6—C5—Cl1119.5 (2)H10B—C10—H10C109.5
C4—C5—Cl1119.2 (2)
C9—O1—C1—O23.0 (5)C2—C4—C5—Cl15.4 (4)
C9—O1—C1—C3177.0 (3)C4—C5—C6—C70.2 (4)
O2—C1—C3—C863.3 (4)Cl1—C5—C6—C7177.8 (2)
O1—C1—C3—C8116.7 (3)C4—C5—C6—Cl2179.9 (2)
O2—C1—C3—C4115.9 (3)Cl1—C5—C6—Cl22.3 (3)
O1—C1—C3—C464.1 (3)C5—C6—C7—C83.6 (4)
C8—C3—C4—C53.9 (4)Cl2—C6—C7—C8176.5 (2)
C1—C3—C4—C5175.3 (2)C5—C6—C7—Cl3176.6 (2)
C8—C3—C4—C2176.6 (2)Cl2—C6—C7—Cl33.3 (3)
C1—C3—C4—C24.2 (4)C4—C3—C8—C70.6 (4)
O3—C2—C4—C5118.0 (3)C1—C3—C8—C7178.6 (2)
O4—C2—C4—C563.7 (3)C4—C3—C8—Cl4176.7 (2)
O3—C2—C4—C361.5 (3)C1—C3—C8—Cl44.1 (3)
O4—C2—C4—C3116.8 (3)C6—C7—C8—C33.2 (4)
C3—C4—C5—C63.5 (4)Cl3—C7—C8—C3177.0 (2)
C2—C4—C5—C6177.0 (2)C6—C7—C8—Cl4179.5 (2)
C3—C4—C5—Cl1174.1 (2)Cl3—C7—C8—Cl40.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.862.742 (3)173
N1—H1B···O4ii0.891.932.794 (3)163
N1—H1C···O40.891.922.797 (3)170
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaCH6N+·C9H3Cl4O4
Mr348.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.3138 (13), 14.2231 (14), 6.7648 (7)
β (°) 91.021 (1)
V3)1377.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.45 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.697, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
6756, 2413, 1752
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.06
No. of reflections2413
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.862.742 (3)173
N1—H1B···O4ii0.891.932.794 (3)163
N1—H1C···O40.891.922.797 (3)170
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds