organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-5,7-dimeth­­oxy­chroman-4-ol

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: karent@ukzn.ac.za

(Received 2 November 2010; accepted 13 January 2011; online 23 February 2011)

In the crystal structure of the title compound, C18H20O4, O—H⋯O hydrogen bonds connect the mol­ecules in parallel layers along the b axis.

Related literature

For analogous structures, see Koch et al. (1994[Koch, K., Melvin, L. S., Reiter, L. A., Biggers, M. S., Showell, H. J., Griffiths, R. J., Pettipher, E. R., Chen, J. B., Milici, A. J., Breslow, R., Conklyn, M. J., Smith, M. A., Hackman, B. C., Doherty, N. S., Salter, E., Farell, C. A. & Schulte, G. (1994). J. Med. Chem. 37, 3197-3199.]); Porter et al. (1985[Porter, L. J., Wong, R. Y. & Chan, B. G. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1413-1418.]). For the biological activity of naturally ocurring homoisoflavanones that possess a 3-benzyl-substituted chroman ring system, see: Zhang et al. (2008[Zhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909-913.]). For our work on the synthesis and characterization of natural products from this family of compounds in the search for new medical agents, see: Shaikh et al. (2011[Shaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2011). Nat. Prod. Res. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4

  • Mr = 300.34

  • Monoclinic, P 21 /c

  • a = 9.870 (5) Å

  • b = 11.211 (6) Å

  • c = 14.603 (7) Å

  • β = 107.072 (7)°

  • V = 1544.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.37 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • 12055 measured reflections

  • 3882 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.04

  • 3882 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.95 (1) 1.93 (1) 2.8366 (15) 158 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naturally ocurring homoisoflavanones that posses a 3-benzyl-substituted chroman ring system as a common framework have been isolated from a wide range of natural sources and exhibit a variety of biological activities (Zhang et al., 2008). We recently have been involved in the synthesis and characterization of natural products from this family of compounds in the search for new medical agents (Shaikh et al., 2011). The title compound is an intermediate step in the synthesis of 5,7 dimethoxy-3-benzyl-4-chroman-none.

There a few analogous structures of chroman alcohols bearing a benzyl ring found in the literature. The two closest have the 5,7 dimethoxy moieties, where one is a biphenyl derivative with an alkylated ketone at the 4 position (Koch et al.,1994) the other has a phenyl group at the 2 position but no alcohol functionality (Porter et al., 1985). Here we report the first example where a chroman-ol benzyl derivative (Fig. 1) that demonstrates hydrogen bonding in the solid state. This intermolecular hydrogen bond O2—H—O1 (2.8366 Å) holds the structure in two parallel plains (Fig. 2). The intermolecular distances between the ring centroids are all greater than 6 Å suggesting that there is no π -stacking.

Related literature top

For analogous structures, see Koch et al. (1994); Porter et al. (1985). For the biological activity of naturally ocurring homoisoflavanones that posses a 3-benzyl-substituted chroman ring system, see: Zhang et al. (2008). For our work on the synthesis and characterization of natural products from this family of compounds in the search for new medical agents, see: Shaikh et al. (2011).

Experimental top

To a solution of 5,7-dimethoxy-3-(benzyl)-4-chromanone (1.0 g, 3.3 mmol) in anhydrous MeOH (15 ml), NaBH4 (0.38 g, 10.0 mmol) was added portionwise at a temperature of 0 °C under a nitrogen atmosphere. The mixture was then allowed to reach room temperature and stirred for 1 h. The reaction mixture was quenched with water and extracted with ethyl acetate (3 x 30 ml). The organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure to produce a viscous oil mixture. The residue obtained after evaporation of the solvent was chromatographed over a silica gel column using mixture of ethyl acetate/hexane (30:70) as eluent product to yield of 88% (0.88 g). Off-white solid; m.p. 118–121 °C. The title compound was recrystalized from a solution of ethyl acetate/hexane (30:70) at room temperature.

1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.33–7.26 (m, 5H), 6.02 (d, J=2.20 Hz, 1H), 6.00 (d, J=2.20 Hz, 1H), 4.70 (d, J=2.40 Hz, 1H), 4.02 (dd, J=3.68, 6.20 Hz, 2H), 3.77 (s, 3H), 3.73 (s, 3H), 2.95 (dd, J=8.08, 8.12 Hz, 1H), 2.66 (dd, J=7.44, 7.44 Hz, 1H).

13C NMR (100 MHz, CDCl3, δ, p.p.m.): 161.1, 159.2, 155.9, 139.6, 129.1, 128.4, 126.1, 106.7, 93.0, 91.4, 65.2, 59.6, 55.4, 55.3, 40.0, 32.9.

IR: 3501, 2946, 1592, 1453, 1304, 1200, 1052.

HRMS (EI): Calcd for C18H20O4Na 323.1254, found 323.1271.

Refinement top

Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO diffractometer using graphite-monochromated Mo—Ka radiation (c = 0.71073 Å). Data collection was carried out at 100 (2) K. Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). Cell refinement and data reduction were performed using the program SAINT (Bruker, 2006). The data were scaled and empirical absorption corrections were performed using SADABS (Sheldrick, 1997). The structure was solved by direct methods using SHELXS97 (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using SHELXL97 (Sheldrick, 2008) and using the graphics interface program X-SEED (Barbour, 2001). All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except the hydroxyl hydrogen, were positioned geometrically with C—H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms, with Uiso (H) = 1.2 - 1.5 Ueq (C).

Computing details top

Data collection: APEX (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structue of the title compound showing the numbering scheme.
[Figure 2] Fig. 2. Projection viewed along [100]. All hydrogen have been omitted for clarity. The hydrogen bonds are shown as dotted lines.
3-Benzyl-5,7-dimethoxychroman-4-ol top
Crystal data top
C18H20O41544.6(13)
Mr = 300.34Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.870 (5) ÅCell parameters from 12055 reflections
b = 11.211 (6) Åθ = 2.2–28.5°
c = 14.603 (7) ŵ = 0.09 mm1
β = 107.072 (7)°T = 100 K
V = 1544.6 (13) Å3Needle, colourless
Z = 40.37 × 0.24 × 0.20 mm
F(000) = 640
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.5°, θmin = 2.2°
0.5° ϕ scans and ω scansh = 1213
12055 measured reflectionsk = 1514
3882 independent reflectionsl = 199
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.5109P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C18H20O4V = 1544.6 (13) Å3
Mr = 300.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.870 (5) ŵ = 0.09 mm1
b = 11.211 (6) ÅT = 100 K
c = 14.603 (7) Å0.37 × 0.24 × 0.20 mm
β = 107.072 (7)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3369 reflections with I > 2σ(I)
12055 measured reflectionsRint = 0.021
3882 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
3882 reflectionsΔρmin = 0.21 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00588 (8)0.11619 (7)0.23516 (5)0.01815 (17)
O20.16950 (8)0.17225 (7)0.31067 (5)0.01963 (17)
H2O0.1135 (16)0.2376 (12)0.2790 (11)0.046 (5)*
O30.32946 (8)0.01390 (7)0.06048 (5)0.02129 (18)
O40.08477 (8)0.24224 (7)0.08733 (5)0.01719 (16)
C10.10969 (11)0.08620 (10)0.31876 (7)0.0177 (2)
H1A0.14270.15920.35690.021*
H1B0.07570.02950.35910.021*
C20.23245 (10)0.03074 (9)0.29118 (7)0.0150 (2)
H20.25800.08550.24480.018*
C30.18241 (10)0.08729 (9)0.23985 (7)0.01346 (19)
H30.25480.11630.20940.016*
C40.04340 (10)0.06766 (9)0.16310 (7)0.01331 (19)
C50.04198 (10)0.03082 (9)0.16389 (7)0.0144 (2)
C60.16888 (11)0.05346 (9)0.09140 (7)0.0165 (2)
H60.22520.12130.09420.020*
C70.20927 (10)0.02633 (10)0.01570 (7)0.0162 (2)
C80.12787 (11)0.12749 (9)0.01173 (7)0.0163 (2)
H80.15760.18210.04000.020*
C90.00293 (10)0.14667 (9)0.08470 (7)0.01417 (19)
C100.36316 (11)0.01853 (10)0.37985 (7)0.0185 (2)
H10A0.34080.03740.42590.022*
H10B0.38510.09720.41160.022*
C110.49155 (11)0.02629 (10)0.35418 (7)0.0177 (2)
C120.58336 (12)0.05326 (11)0.32883 (8)0.0232 (2)
H120.56680.13660.33000.028*
C130.69930 (12)0.01154 (14)0.30172 (9)0.0313 (3)
H130.76140.06660.28510.038*
C140.72403 (13)0.11021 (14)0.29902 (9)0.0343 (3)
H140.80240.13870.28000.041*
C150.63369 (13)0.18964 (13)0.32419 (9)0.0307 (3)
H150.65040.27300.32250.037*
C160.51859 (12)0.14850 (11)0.35193 (8)0.0221 (2)
H160.45780.20400.36950.027*
C170.40947 (12)0.09390 (11)0.06520 (8)0.0237 (2)
H17A0.49200.09220.12230.036*
H17B0.44130.10060.00790.036*
H17C0.34970.16260.06870.036*
C180.05036 (12)0.31979 (10)0.00542 (8)0.0204 (2)
H18A0.12040.38410.01580.031*
H18B0.04410.35400.00370.031*
H18C0.05120.27420.05160.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (3)0.0177 (4)0.0169 (4)0.0036 (3)0.0012 (3)0.0048 (3)
O20.0239 (4)0.0178 (4)0.0151 (3)0.0049 (3)0.0025 (3)0.0040 (3)
O30.0182 (4)0.0241 (4)0.0173 (4)0.0025 (3)0.0014 (3)0.0001 (3)
O40.0204 (4)0.0153 (4)0.0148 (3)0.0021 (3)0.0037 (3)0.0037 (3)
C10.0165 (4)0.0200 (5)0.0151 (4)0.0024 (4)0.0022 (4)0.0045 (4)
C20.0148 (4)0.0150 (5)0.0150 (4)0.0008 (4)0.0043 (4)0.0013 (4)
C30.0149 (4)0.0139 (5)0.0116 (4)0.0004 (3)0.0039 (3)0.0005 (3)
C40.0143 (4)0.0144 (5)0.0116 (4)0.0012 (4)0.0043 (3)0.0006 (3)
C50.0158 (4)0.0149 (5)0.0132 (4)0.0018 (4)0.0056 (4)0.0012 (4)
C60.0154 (4)0.0171 (5)0.0172 (5)0.0016 (4)0.0053 (4)0.0005 (4)
C70.0146 (4)0.0198 (5)0.0132 (4)0.0010 (4)0.0028 (4)0.0028 (4)
C80.0189 (5)0.0169 (5)0.0125 (4)0.0023 (4)0.0038 (4)0.0016 (4)
C90.0169 (4)0.0132 (4)0.0136 (4)0.0008 (4)0.0062 (4)0.0006 (4)
C100.0165 (5)0.0206 (5)0.0169 (5)0.0002 (4)0.0025 (4)0.0045 (4)
C110.0146 (4)0.0221 (5)0.0133 (4)0.0010 (4)0.0009 (4)0.0021 (4)
C120.0199 (5)0.0253 (6)0.0217 (5)0.0031 (4)0.0020 (4)0.0013 (4)
C130.0180 (5)0.0516 (8)0.0235 (6)0.0070 (5)0.0047 (4)0.0035 (5)
C140.0173 (5)0.0596 (9)0.0227 (6)0.0095 (6)0.0006 (4)0.0103 (6)
C150.0269 (6)0.0346 (7)0.0238 (6)0.0143 (5)0.0033 (5)0.0066 (5)
C160.0212 (5)0.0226 (6)0.0187 (5)0.0031 (4)0.0003 (4)0.0004 (4)
C170.0187 (5)0.0257 (6)0.0234 (5)0.0043 (4)0.0011 (4)0.0040 (4)
C180.0269 (5)0.0175 (5)0.0169 (5)0.0009 (4)0.0066 (4)0.0051 (4)
Geometric parameters (Å, º) top
O1—C51.3815 (13)C8—C91.3895 (14)
O1—C11.4445 (13)C8—H80.9500
O2—C31.4389 (13)C10—C111.5091 (15)
O2—H2O0.952 (9)C10—H10A0.9900
O3—C71.3746 (13)C10—H10B0.9900
O3—C171.4342 (15)C11—C121.3966 (16)
O4—C91.3708 (13)C11—C161.3981 (17)
O4—C181.4365 (13)C12—C131.3967 (18)
C1—C21.5176 (15)C12—H120.9500
C1—H1A0.9900C13—C141.389 (2)
C1—H1B0.9900C13—H130.9500
C2—C31.5296 (15)C14—C151.384 (2)
C2—C101.5423 (15)C14—H140.9500
C2—H21.0000C15—C161.3919 (17)
C3—C41.5113 (14)C15—H150.9500
C3—H31.0000C16—H160.9500
C4—C51.3911 (15)C17—H17A0.9800
C4—C91.4131 (14)C17—H17B0.9800
C5—C61.4053 (15)C17—H17C0.9800
C6—C71.3864 (15)C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.4009 (16)C18—H18C0.9800
C5—O1—C1116.13 (8)O4—C9—C4114.56 (9)
C3—O2—H2O108.8 (10)C8—C9—C4121.84 (9)
C7—O3—C17117.16 (9)C11—C10—C2112.17 (9)
C9—O4—C18117.17 (8)C11—C10—H10A109.2
O1—C1—C2111.41 (9)C2—C10—H10A109.2
O1—C1—H1A109.3C11—C10—H10B109.2
C2—C1—H1A109.3C2—C10—H10B109.2
O1—C1—H1B109.3H10A—C10—H10B107.9
C2—C1—H1B109.3C12—C11—C16118.44 (11)
H1A—C1—H1B108.0C12—C11—C10120.71 (10)
C1—C2—C3108.44 (8)C16—C11—C10120.81 (10)
C1—C2—C10110.47 (9)C11—C12—C13120.71 (12)
C3—C2—C10113.88 (9)C11—C12—H12119.6
C1—C2—H2108.0C13—C12—H12119.6
C3—C2—H2108.0C14—C13—C12120.16 (12)
C10—C2—H2108.0C14—C13—H13119.9
O2—C3—C4112.14 (8)C12—C13—H13119.9
O2—C3—C2107.73 (8)C15—C14—C13119.50 (12)
C4—C3—C2109.25 (8)C15—C14—H14120.3
O2—C3—H3109.2C13—C14—H14120.3
C4—C3—H3109.2C14—C15—C16120.57 (13)
C2—C3—H3109.2C14—C15—H15119.7
C5—C4—C9116.84 (9)C16—C15—H15119.7
C5—C4—C3121.98 (9)C15—C16—C11120.62 (12)
C9—C4—C3121.13 (9)C15—C16—H16119.7
O1—C5—C4122.22 (9)C11—C16—H16119.7
O1—C5—C6114.71 (9)O3—C17—H17A109.5
C4—C5—C6123.04 (9)O3—C17—H17B109.5
C7—C6—C5117.91 (10)H17A—C17—H17B109.5
C7—C6—H6121.0O3—C17—H17C109.5
C5—C6—H6121.0H17A—C17—H17C109.5
O3—C7—C6123.90 (10)H17B—C17—H17C109.5
O3—C7—C8114.69 (9)O4—C18—H18A109.5
C6—C7—C8121.41 (9)O4—C18—H18B109.5
C9—C8—C7118.96 (9)H18A—C18—H18B109.5
C9—C8—H8120.5O4—C18—H18C109.5
C7—C8—H8120.5H18A—C18—H18C109.5
O4—C9—C8123.60 (9)H18B—C18—H18C109.5
C5—O1—C1—C244.61 (12)O3—C7—C8—C9178.85 (9)
O1—C1—C2—C363.83 (11)C6—C7—C8—C91.05 (15)
O1—C1—C2—C10170.72 (8)C18—O4—C9—C85.74 (14)
C1—C2—C3—O273.15 (10)C18—O4—C9—C4174.43 (8)
C10—C2—C3—O250.27 (11)C7—C8—C9—O4179.55 (9)
C1—C2—C3—C448.90 (11)C7—C8—C9—C40.63 (15)
C10—C2—C3—C4172.32 (8)C5—C4—C9—O4179.95 (8)
O2—C3—C4—C5100.13 (11)C3—C4—C9—O42.56 (13)
C2—C3—C4—C519.23 (12)C5—C4—C9—C80.11 (14)
O2—C3—C4—C982.51 (11)C3—C4—C9—C8177.60 (9)
C2—C3—C4—C9158.13 (9)C1—C2—C10—C11175.01 (9)
C1—O1—C5—C412.11 (13)C3—C2—C10—C1162.68 (12)
C1—O1—C5—C6169.70 (9)C2—C10—C11—C1288.26 (12)
C9—C4—C5—O1178.06 (9)C2—C10—C11—C1689.45 (12)
C3—C4—C5—O10.59 (14)C16—C11—C12—C130.11 (16)
C9—C4—C5—C60.02 (14)C10—C11—C12—C13177.66 (10)
C3—C4—C5—C6177.45 (9)C11—C12—C13—C140.46 (17)
O1—C5—C6—C7177.79 (9)C12—C13—C14—C150.56 (18)
C4—C5—C6—C70.38 (15)C13—C14—C15—C160.10 (18)
C17—O3—C7—C65.93 (14)C14—C15—C16—C110.48 (17)
C17—O3—C7—C8173.97 (9)C12—C11—C16—C150.57 (16)
C5—C6—C7—O3178.97 (9)C10—C11—C16—C15177.19 (10)
C5—C6—C7—C80.92 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.95 (1)1.93 (1)2.8366 (15)158 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20O4
Mr300.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.870 (5), 11.211 (6), 14.603 (7)
β (°) 107.072 (7)
V3)1544.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12055, 3882, 3369
Rint0.021
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.04
No. of reflections3882
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.21

Computer programs: APEX (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.952 (9)1.931 (11)2.8366 (15)158.2 (15)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K., Melvin, L. S., Reiter, L. A., Biggers, M. S., Showell, H. J., Griffiths, R. J., Pettipher, E. R., Chen, J. B., Milici, A. J., Breslow, R., Conklyn, M. J., Smith, M. A., Hackman, B. C., Doherty, N. S., Salter, E., Farell, C. A. & Schulte, G. (1994). J. Med. Chem. 37, 3197–3199.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationPorter, L. J., Wong, R. Y. & Chan, B. G. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1413–1418.  CSD CrossRef Web of Science Google Scholar
First citationShaikh, M. M., Kruger, H. G., Bodenstein, J., Smith, P. & du Toit, K. (2011). Nat. Prod. Res. In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Zhang, W.-G., Kang, J., Bao, K., Dai, Y. & Yao, X.-S. (2008). J. Asian Nat. Prod. Res. 10, 909–913.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds