organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-cyano-3-[4-(4,5-di­phenyl-1H-imidazol-2-yl)phen­yl]acrylate dihydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zenghp@scnu.edu.cn

(Received 21 November 2010; accepted 17 February 2011; online 26 February 2011)

In the title compound, C27H21N3O2·2H2O, the three benzene rings attached to the heterocyclic imidazole ring are not coplanar with the latter, making dihedral angles of 14.8 (2), 31.4 (2), and 37.5 (2)°, respectively, for the benzene ring planes in the 2-, 4- and 5-positions. In the crystal, there are two water mol­ecules which serve as connectors between the acrylate mol­ecules and stabilize the structure via N—H⋯O, O—H⋯N, C—H⋯O and O—H⋯O hydrogen bonding.

Related literature

For background to the electronic and photophysical properties of 2,4,5-triaryl­imidazoles, see: Valiyev et al. (2007[Valiyev, F., Hu, W. S., Chen, H. Y., Kuo, M. Y., Chao, I. & Tao, Y. T. (2007). Chem. Mater. 19, 3018-3026.]). For the synthetic procedure, see: Liu et al. (2006[Liu, X. F., Zhong, Z. P. & Xu, Z. L. (2006). Fen Xi Ce Shi Xue Bao, 25, 6-10.]). For related structures, see: Fridman et al. (2009[Fridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2009). J. Mol. Struct. 917, 101-109.]).

[Scheme 1]

Experimental

Crystal data
  • C27H21N3O2·2H2O

  • Mr = 455.50

  • Triclinic, [P \overline 1]

  • a = 8.4976 (16) Å

  • b = 9.0263 (17) Å

  • c = 16.421 (3) Å

  • α = 83.536 (2)°

  • β = 79.821 (2)°

  • γ = 71.089 (2)°

  • V = 1170.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.969

  • 5922 measured reflections

  • 4048 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.03

  • 4048 reflections

  • 326 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.88 (3) 2.04 (3) 2.915 (3) 172 (2)
O2W—H3W⋯N2 0.89 (4) 1.98 (4) 2.870 (3) 173 (3)
C9—H9⋯O1W 0.93 2.48 3.338 (3) 154
O1W—H2W⋯O2Wi 0.86 (4) 1.95 (2) 2.789 (3) 165 (4)
O1W—H1W⋯N3ii 0.83 (2) 2.24 (2) 3.034 (3) 159 (3)
O2W—H4W⋯O1Wiii 0.81 (4) 2.25 (4) 3.041 (4) 167 (4)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,4,5-Triarylimidazoles based on extended organic π systems have received increasing interest due to the intriguing electronic and photophysical properties (Valiyev et al., 2007). As part of our on-going research interest in chemiluminescence compounds, the title compound was synthesized and its crystal structure determined as described herein.

The molecular structure of the title compound is presented in Fig. 1. Three benzene rings attached to the heterocyclic imidazole ring are not coplanar with the latter, with dihedral angles of 14.8 (2)°, 31.4 (2)°, and 37.5 (2)°, respectively, between the benzene ring planes in the 2-, 4- and 5-positions of the imidazole ring.

In the crystal packing, H2O molecules serve as connectors to form the three-dimensional packing via hydrogen bonds (Fig. 2, Tab. 1), including N—H···O, O—H···N, C—H···O and O—H···O hydrogen bonds.

The crystal structures of several compounds related to the title molecule have been reported (Fridman et al., 2009).

Related literature top

For background to the electronic and photophysical properties of 2,4,5-triarylimidazoles, see: Valiyev et al. (2007). For the synthetic procedure, see: Liu et al. (2006). For related structures, see: Fridman et al. (2009).

Experimental top

The title compound was prepared as reported earlier (Liu et al., 2006). A mixture of 4-(4,5-diphenyl-1H-imidazol-2-yl)benzaldehyde (0.225 g, 0.69 mmol), ethyl 2-cyanoacetate (0.156 g, 2.1 mmol) and pyridine (2 ml) was stirred at room temperature for 10 h. The solution was poured into water (15 ml) and orange precipitate of the title compound formed immediately. The precipitate obtained was filtered, washed with water and dried. Single crystals of the title compound were obtained by slow evaporation from ethyl acetate at room temperature.

Refinement top

The H-atoms bonded to N and water molecules were located from a difference map and were included at restrained distances O—H = 0.82 (2) and N—H = 0.86 (2) Å. The rest of the H atoms were positioned in calculated positions with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms and were refined using a riding model, with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso = 1.2Ueq for others.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and 50% probability Displacement ellipsoids.
[Figure 2] Fig. 2. Part view of the crystal structure, showing hydrogen bonds indicated by dashed lines. Hydrogen atoms not involved in H-bonds have been omitted for clarity.
(E)-Ethyl 2-cyano-3-[4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl]acrylate dihydrate top
Crystal data top
C27H21N3O2·2H2OZ = 2
Mr = 455.50F(000) = 480
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4976 (16) ÅCell parameters from 2029 reflections
b = 9.0263 (17) Åθ = 2.4–24.2°
c = 16.421 (3) ŵ = 0.09 mm1
α = 83.536 (2)°T = 296 K
β = 79.821 (2)°Block, red
γ = 71.089 (2)°0.30 × 0.28 × 0.24 mm
V = 1170.7 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.962, Tmax = 0.969k = 105
5922 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3479P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4048 reflectionsΔρmax = 0.31 e Å3
326 parametersΔρmin = 0.28 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (4)
Crystal data top
C27H21N3O2·2H2Oγ = 71.089 (2)°
Mr = 455.50V = 1170.7 (4) Å3
Triclinic, P1Z = 2
a = 8.4976 (16) ÅMo Kα radiation
b = 9.0263 (17) ŵ = 0.09 mm1
c = 16.421 (3) ÅT = 296 K
α = 83.536 (2)°0.30 × 0.28 × 0.24 mm
β = 79.821 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3010 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.969Rint = 0.024
5922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0489 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4048 reflectionsΔρmin = 0.28 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1176 (2)0.5581 (2)0.34629 (10)0.0461 (4)
N20.2308 (2)0.30220 (19)0.36163 (10)0.0458 (4)
C130.2002 (3)0.4368 (2)0.39524 (12)0.0438 (5)
C100.2495 (2)0.4536 (2)0.47340 (12)0.0426 (5)
C220.1701 (3)0.2091 (2)0.23943 (12)0.0454 (5)
C40.4029 (3)0.6126 (3)0.74019 (13)0.0493 (5)
C90.1825 (3)0.5922 (2)0.51442 (13)0.0476 (5)
H90.10190.67610.49230.057*
C80.2336 (3)0.6071 (2)0.58706 (13)0.0499 (5)
H80.18820.70130.61310.060*
C140.1657 (3)0.3376 (2)0.28845 (12)0.0445 (5)
C70.3527 (3)0.4828 (2)0.62223 (12)0.0458 (5)
O20.4180 (3)0.7169 (2)0.86022 (11)0.0843 (6)
C120.4155 (3)0.3427 (2)0.58202 (14)0.0535 (6)
H120.49210.25700.60550.064*
C50.3509 (3)0.7711 (3)0.70713 (14)0.0532 (6)
C110.3671 (3)0.3284 (2)0.50880 (14)0.0528 (6)
H110.41310.23450.48250.063*
C150.0948 (3)0.4979 (2)0.27737 (12)0.0448 (5)
C160.0128 (3)0.6002 (2)0.21090 (13)0.0473 (5)
C230.3001 (3)0.0680 (2)0.24136 (13)0.0533 (6)
H230.38650.05720.27150.064*
C260.0437 (3)0.2198 (3)0.19410 (15)0.0570 (6)
H260.04450.31300.19190.068*
C170.1236 (3)0.7339 (2)0.22837 (14)0.0524 (6)
H170.16450.75950.28310.063*
N30.3101 (3)0.8982 (3)0.68135 (14)0.0735 (6)
C30.4488 (3)0.5846 (3)0.82517 (16)0.0648 (7)
C210.0700 (3)0.5658 (3)0.12820 (14)0.0595 (6)
H210.16140.47730.11520.071*
C200.0064 (4)0.6604 (3)0.06561 (15)0.0697 (7)
H200.03330.63530.01080.084*
C270.1752 (3)0.0438 (3)0.15516 (15)0.0655 (7)
H270.17650.12880.12750.079*
C180.1989 (3)0.8292 (3)0.16464 (16)0.0651 (7)
H180.28910.91910.17680.078*
C250.0461 (3)0.0946 (3)0.15209 (16)0.0645 (7)
H250.03970.10410.12180.077*
C240.3018 (3)0.0562 (3)0.19897 (15)0.0636 (7)
H240.39020.14940.20020.076*
O10.5041 (3)0.4573 (3)0.85780 (13)0.1021 (8)
C190.1412 (4)0.7919 (3)0.08367 (17)0.0717 (7)
H190.19320.85540.04120.086*
O1W0.0015 (3)0.8867 (2)0.38559 (12)0.0792 (6)
O2W0.2110 (3)0.0132 (3)0.44859 (16)0.0886 (7)
C10.5089 (4)0.8081 (4)0.96681 (13)0.1127 (12)
H1A0.43860.91350.95650.169*
H1B0.61680.79180.93300.169*
H1C0.52290.79141.02420.169*
C20.4361 (4)0.7061 (4)0.94811 (13)0.1250 (14)
H2A0.32570.72560.98130.150*
H2B0.50320.60020.96290.150*
H2W0.071 (4)0.931 (4)0.396 (2)0.144 (17)*
H1W0.065 (4)0.952 (4)0.357 (2)0.128 (14)*
H3W0.226 (4)0.101 (4)0.423 (2)0.109 (12)*
H4W0.168 (5)0.031 (5)0.496 (3)0.145 (18)*
H10.088 (3)0.659 (3)0.3534 (15)0.071 (8)*
C60.4077 (3)0.4897 (3)0.69979 (13)0.0518 (5)
H60.45420.39240.72620.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0584 (11)0.0352 (10)0.0444 (10)0.0135 (8)0.0060 (8)0.0072 (8)
N20.0525 (10)0.0375 (9)0.0467 (10)0.0127 (8)0.0049 (8)0.0077 (8)
C130.0478 (11)0.0381 (11)0.0446 (11)0.0136 (9)0.0025 (9)0.0054 (9)
C100.0469 (11)0.0395 (11)0.0421 (11)0.0152 (9)0.0030 (9)0.0048 (9)
C220.0540 (12)0.0395 (11)0.0432 (11)0.0165 (10)0.0012 (9)0.0078 (9)
C40.0507 (12)0.0489 (13)0.0483 (12)0.0128 (10)0.0135 (10)0.0018 (10)
C90.0506 (12)0.0399 (11)0.0494 (12)0.0075 (9)0.0115 (9)0.0037 (9)
C80.0575 (13)0.0401 (12)0.0510 (13)0.0090 (10)0.0125 (10)0.0102 (10)
C140.0489 (12)0.0401 (11)0.0441 (11)0.0139 (9)0.0024 (9)0.0083 (9)
C70.0507 (12)0.0415 (12)0.0457 (12)0.0146 (10)0.0088 (9)0.0014 (9)
O20.1337 (17)0.0820 (13)0.0525 (10)0.0434 (12)0.0331 (11)0.0062 (9)
C120.0592 (13)0.0409 (12)0.0558 (13)0.0066 (10)0.0149 (11)0.0013 (10)
C50.0589 (14)0.0530 (15)0.0506 (13)0.0149 (11)0.0151 (11)0.0111 (11)
C110.0632 (14)0.0361 (12)0.0539 (13)0.0069 (10)0.0080 (11)0.0087 (10)
C150.0523 (12)0.0395 (11)0.0428 (11)0.0147 (9)0.0041 (9)0.0067 (9)
C160.0584 (13)0.0410 (11)0.0463 (12)0.0192 (10)0.0085 (10)0.0061 (9)
C230.0652 (14)0.0421 (12)0.0506 (12)0.0120 (11)0.0081 (10)0.0089 (10)
C260.0577 (14)0.0511 (13)0.0651 (14)0.0188 (11)0.0074 (11)0.0126 (11)
C170.0606 (14)0.0440 (12)0.0542 (13)0.0170 (11)0.0082 (10)0.0074 (10)
N30.0945 (17)0.0497 (13)0.0759 (15)0.0122 (12)0.0292 (12)0.0064 (11)
C30.0772 (17)0.0685 (17)0.0583 (15)0.0290 (14)0.0267 (13)0.0015 (13)
C210.0755 (16)0.0504 (13)0.0501 (13)0.0155 (12)0.0066 (11)0.0094 (11)
C200.103 (2)0.0661 (17)0.0465 (14)0.0301 (16)0.0181 (13)0.0061 (12)
C270.0919 (19)0.0530 (15)0.0589 (15)0.0327 (14)0.0016 (13)0.0186 (12)
C180.0670 (15)0.0528 (14)0.0757 (17)0.0120 (12)0.0241 (13)0.0028 (12)
C250.0711 (16)0.0658 (16)0.0677 (16)0.0316 (14)0.0135 (12)0.0136 (13)
C240.0846 (18)0.0405 (13)0.0599 (14)0.0108 (12)0.0067 (13)0.0123 (11)
O10.154 (2)0.0779 (14)0.0811 (14)0.0278 (14)0.0646 (14)0.0158 (11)
C190.0910 (19)0.0665 (17)0.0666 (17)0.0261 (15)0.0377 (15)0.0044 (13)
O1W0.1181 (17)0.0475 (11)0.0756 (13)0.0201 (11)0.0391 (12)0.0042 (9)
O2W0.136 (2)0.0639 (13)0.0736 (15)0.0457 (13)0.0134 (14)0.0031 (11)
C10.161 (3)0.132 (3)0.0659 (19)0.063 (3)0.031 (2)0.017 (2)
C20.214 (4)0.151 (3)0.0583 (18)0.111 (3)0.053 (2)0.0087 (19)
C60.0549 (13)0.0468 (12)0.0518 (13)0.0113 (10)0.0141 (10)0.0015 (10)
Geometric parameters (Å, º) top
N1—C131.357 (3)C23—C241.379 (3)
N1—C151.378 (3)C23—H230.9300
N1—H10.88 (3)C26—C251.381 (3)
N2—C131.321 (2)C26—H260.9300
N2—C141.373 (3)C17—C181.386 (3)
C13—C101.456 (3)C17—H170.9300
C10—C91.391 (3)C3—O11.195 (3)
C10—C111.393 (3)C21—C201.373 (3)
C22—C261.385 (3)C21—H210.9300
C22—C231.391 (3)C20—C191.374 (4)
C22—C141.471 (3)C20—H200.9300
C4—C61.342 (3)C27—C241.366 (4)
C4—C51.427 (3)C27—C251.373 (4)
C4—C31.487 (3)C27—H270.9300
C9—C81.373 (3)C18—C191.373 (4)
C9—H90.9300C18—H180.9300
C8—C71.393 (3)C25—H250.9300
C8—H80.9300C24—H240.9300
C14—C151.380 (3)C19—H190.9300
C7—C121.394 (3)O1W—H2W0.86 (4)
C7—C61.446 (3)O1W—H1W0.834 (18)
O2—C31.314 (3)O2W—H3W0.89 (4)
O2—C21.4674O2W—H4W0.81 (4)
C12—C111.369 (3)C1—C21.3504
C12—H120.9300C1—H1A0.9600
C5—N31.140 (3)C1—H1B0.9600
C11—H110.9300C1—H1C0.9600
C15—C161.468 (3)C2—H2A0.9700
C16—C171.392 (3)C2—H2B0.9700
C16—C211.393 (3)C6—H60.9300
C13—N1—C15108.19 (17)C25—C26—H26119.4
C13—N1—H1128.2 (16)C22—C26—H26119.4
C15—N1—H1123.5 (16)C18—C17—C16120.3 (2)
C13—N2—C14106.65 (16)C18—C17—H17119.8
N2—C13—N1110.47 (18)C16—C17—H17119.8
N2—C13—C10124.99 (18)O1—C3—O2124.4 (2)
N1—C13—C10124.53 (18)O1—C3—C4124.1 (2)
C9—C10—C11118.36 (19)O2—C3—C4111.5 (2)
C9—C10—C13121.92 (18)C20—C21—C16121.1 (2)
C11—C10—C13119.73 (18)C20—C21—H21119.5
C26—C22—C23117.82 (19)C16—C21—H21119.5
C26—C22—C14122.29 (19)C21—C20—C19120.3 (2)
C23—C22—C14119.80 (19)C21—C20—H20119.9
C6—C4—C5123.56 (19)C19—C20—H20119.9
C6—C4—C3118.9 (2)C24—C27—C25119.6 (2)
C5—C4—C3117.5 (2)C24—C27—H27120.2
C8—C9—C10121.08 (19)C25—C27—H27120.2
C8—C9—H9119.5C19—C18—C17120.5 (2)
C10—C9—H9119.5C19—C18—H18119.8
C9—C8—C7120.76 (19)C17—C18—H18119.8
C9—C8—H8119.6C27—C25—C26120.0 (2)
C7—C8—H8119.6C27—C25—H25120.0
N2—C14—C15109.59 (17)C26—C25—H25120.0
N2—C14—C22119.24 (17)C27—C24—C23120.8 (2)
C15—C14—C22131.02 (19)C27—C24—H24119.6
C8—C7—C12117.82 (19)C23—C24—H24119.6
C8—C7—C6123.33 (19)C18—C19—C20119.8 (2)
C12—C7—C6118.79 (19)C18—C19—H19120.1
C3—O2—C2117.12C20—C19—H19120.1
C11—C12—C7121.5 (2)H2W—O1W—H1W107 (2)
C11—C12—H12119.2H3W—O2W—H4W109 (4)
C7—C12—H12119.2C2—C1—H1A109.5
N3—C5—C4179.3 (2)C2—C1—H1B109.5
C12—C11—C10120.42 (19)H1A—C1—H1B109.5
C12—C11—H11119.8C2—C1—H1C109.5
C10—C11—H11119.8H1A—C1—H1C109.5
N1—C15—C14105.09 (18)H1B—C1—H1C109.5
N1—C15—C16121.59 (18)C1—C2—O2113.40
C14—C15—C16133.31 (19)C1—C2—H2A108.9
C17—C16—C21118.1 (2)O2—C2—H2A108.9
C17—C16—C15121.25 (19)C1—C2—H2B108.9
C21—C16—C15120.7 (2)O2—C2—H2B108.9
C24—C23—C22120.5 (2)H2A—C2—H2B107.7
C24—C23—H23119.7C4—C6—C7131.0 (2)
C22—C23—H23119.7C4—C6—H6114.5
C25—C26—C22121.2 (2)C7—C6—H6114.5
C14—N2—C13—N10.0 (2)N1—C15—C16—C1738.2 (3)
C14—N2—C13—C10179.44 (19)C14—C15—C16—C17143.4 (2)
C15—N1—C13—N20.3 (2)N1—C15—C16—C21141.8 (2)
C15—N1—C13—C10179.10 (18)C14—C15—C16—C2136.7 (4)
N2—C13—C10—C9165.5 (2)C26—C22—C23—C240.3 (3)
N1—C13—C10—C915.2 (3)C14—C22—C23—C24176.9 (2)
N2—C13—C10—C1114.7 (3)C23—C22—C26—C250.0 (3)
N1—C13—C10—C11164.7 (2)C14—C22—C26—C25176.5 (2)
C11—C10—C9—C81.5 (3)C21—C16—C17—C180.1 (3)
C13—C10—C9—C8178.4 (2)C15—C16—C17—C18179.8 (2)
C10—C9—C8—C70.8 (3)C2—O2—C3—O16.81
C13—N2—C14—C150.4 (2)C2—O2—C3—C4171.99
C13—N2—C14—C22175.68 (18)C6—C4—C3—O16.8 (4)
C26—C22—C14—N2145.5 (2)C5—C4—C3—O1175.1 (3)
C23—C22—C14—N230.9 (3)C6—C4—C3—O2172.1 (2)
C26—C22—C14—C1529.5 (3)C5—C4—C3—O26.0 (3)
C23—C22—C14—C15154.0 (2)C17—C16—C21—C200.4 (4)
C9—C8—C7—C121.1 (3)C15—C16—C21—C20179.7 (2)
C9—C8—C7—C6178.1 (2)C16—C21—C20—C190.2 (4)
C8—C7—C12—C112.3 (3)C16—C17—C18—C190.8 (4)
C6—C7—C12—C11179.4 (2)C24—C27—C25—C260.8 (4)
C6—C4—C5—N3166 (25)C22—C26—C25—C270.3 (4)
C3—C4—C5—N316 (25)C25—C27—C24—C231.1 (4)
C7—C12—C11—C101.6 (3)C22—C23—C24—C270.8 (4)
C9—C10—C11—C120.3 (3)C17—C18—C19—C200.9 (4)
C13—C10—C11—C12179.6 (2)C21—C20—C19—C180.4 (4)
C13—N1—C15—C140.5 (2)C3—O2—C2—C1139.63
C13—N1—C15—C16178.30 (18)C5—C4—C6—C75.9 (4)
N2—C14—C15—N10.5 (2)C3—C4—C6—C7172.0 (2)
C22—C14—C15—N1174.9 (2)C8—C7—C6—C421.8 (4)
N2—C14—C15—C16178.1 (2)C12—C7—C6—C4161.2 (2)
C22—C14—C15—C166.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.88 (3)2.04 (3)2.915 (3)172 (2)
O2W—H3W···N20.89 (4)1.98 (4)2.870 (3)173 (3)
C9—H9···O1W0.932.483.338 (3)154
C6—H6···O10.932.442.813 (3)104
C2—H2B···O10.972.272.680 (3)105
O1W—H2W···O2Wi0.86 (4)1.95 (2)2.789 (3)165 (4)
O1W—H1W···N3ii0.83 (2)2.24 (2)3.034 (3)159 (3)
O2W—H4W···O1Wiii0.81 (4)2.25 (4)3.041 (4)167 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H21N3O2·2H2O
Mr455.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.4976 (16), 9.0263 (17), 16.421 (3)
α, β, γ (°)83.536 (2), 79.821 (2), 71.089 (2)
V3)1170.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.962, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
5922, 4048, 3010
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.03
No. of reflections4048
No. of parameters326
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.88 (3)2.04 (3)2.915 (3)172 (2)
O2W—H3W···N20.89 (4)1.98 (4)2.870 (3)173 (3)
C9—H9···O1W0.932.483.338 (3)154
C6—H6···O10.932.442.813 (3)104
C2—H2B···O10.972.272.680 (3)105
O1W—H2W···O2Wi0.86 (4)1.95 (2)2.789 (3)165 (4)
O1W—H1W···N3ii0.83 (2)2.24 (2)3.034 (3)159 (3)
O2W—H4W···O1Wiii0.81 (4)2.25 (4)3.041 (4)167 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

We are grateful to the Doctoral Program Foundation of the Natural Science Foundation of Guangdong Province, China (No. 5100430) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2009). J. Mol. Struct. 917, 101–109.  CrossRef CAS Google Scholar
First citationLiu, X. F., Zhong, Z. P. & Xu, Z. L. (2006). Fen Xi Ce Shi Xue Bao, 25, 6–10.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValiyev, F., Hu, W. S., Chen, H. Y., Kuo, M. Y., Chao, I. & Tao, Y. T. (2007). Chem. Mater. 19, 3018–3026.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds