organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-{2-[2-(Di­bromo­meth­yl)phen­­oxy]eth­­oxy}benz­yl­oxy)benzaldehyde

aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zxsu@lzu.edu.cn

(Received 21 December 2010; accepted 20 February 2011; online 26 February 2011)

The mol­ecule of the title compound, C23H20Br2O4, adopts a Z conformation as a result of inter­molecular C—H⋯Br bonding. One benzene ring, with the structure R-CHBr2, makes a dihedral angle of 63.0 (2)° with the other benzene ring attached to the aldehyde group. Inter­molecular ππ stacking inter­actions [centroid–centroid distance = 3.698 (4) Å] and a weak C—H⋯Br contact is present in the crystal structure.

Related literature

For general background to the biological activity of salicyl­aldehydes and their derivatives, see: Jahnke et al. (1993[Jahnke, K., Podschun, B., Schnackerz, K. D., Kautz, J. & Cook, P. F. (1993). Biochemistry, 32, 5160-5166.]); Pelttari et al. (2007[Pelttari, E., Karhumaki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch Teil C, 62, 487-497.]); Fillebeen & Pantopoulos (2010[Fillebeen, C. & Pantopoulos, K. (2010). J. Hepatol. 53, 995-999.]); Fan et al. (2010[Fan, C.-D., Su, H., Zhao, J., Zhao, B.-X., Zhang, S.-L. & Miao, J.-Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]). For related structures, see: Mori et al. (2010[Mori, K., Kawasaki, T., Sueoka, S. & Akiyama, T. (2010). Org. Lett. 12, 1732-1735.]); Potapov et al. (2009[Potapov, V. V., Fetisova, N. A., Nikitin, A. V. & Ivachtchenko, A. V. (2009). Mendeleev Commun. 19, 287-289.]); Purushothaman & Raghunathan (2009[Purushothaman, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6848-6850.]). For the preparation of the title compound, see: Purushothaman & Raghunathan (2009[Purushothaman, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6848-6850.]); Zhang et al. (2010[Zhang, L.-W., Wu, W.-Y., Su, Z.-X., Zhang, A.-J. & Liu, X. (2010). Acta Cryst. E66, o2229.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20Br2O4

  • Mr = 520.19

  • Monoclinic, P 21 /c

  • a = 12.867 (7) Å

  • b = 18.07 (1) Å

  • c = 9.649 (5) Å

  • β = 108.955 (6)°

  • V = 2122 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 296 K

  • 0.34 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.281, Tmax = 0.341

  • 15392 measured reflections

  • 3944 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.207

  • S = 1.02

  • 3944 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br1i 0.93 3.03 3.529 (7) 116
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is reported that salicylaldehydes and their derivatives have showed a wide variety of biological activities, such as antiseptic, labelling cell, antiproliferative and pesticidal (Jahnke et al., 1993; Pelttari et al., 2007; Fillebeen & Pantopoulos, 2010; Fan et al., 2010). As an important class of aldehydes, substituted aldehydes also exhibit potential biological activities. The related structures also have been reported (Mori et al., 2010; Potapov et al., 2009; Purushothaman & Raghunathan, 2009). On this base, the title compound was synthesized.

In the title compound (Fig. 1), a dihedral angle 63.0 (2)° is observed between benzene rings on the both ends of molecule. The crystal structure is stabilized by weak intramolecular C—H···O bonds.

The molecule of the title compound is linked by the C—H···Br bonding (Fig. 2) in to the Z formation.

Furthermore, the weak intermolecular ππ stacking interactions - Cg1···Cg2ii= 3.698 (4)Å, Cg3···Cg3iii = 4.193 (5)Å, where Cg1 is centroid of the ring C2–C7, Cg2 is centroid of the ring C9–C14 and Cg3 is centroid of the ring C17–C22. Symmetry codes: (ii) -x, 1-y, -z; (iii) 1-x, 1-y, 1-z.

Related literature top

For general background to the biological activity of salicylaldehydes and their derivatives, see: Jahnke et al. (1993); Pelttari et al. (2007); Fillebeen & Pantopoulos (2010); Fan et al. (2010). For related structures, see: Mori et al. (2010); Potapov et al. (2009); Purushothaman & Raghunathan (2009). For the preparation of the title compound, see: Purushothaman & Raghunathan (2009); Zhang et al. (2010).

Experimental top

All reagents and solvents were obtained from commercial sources and needed to be further purified. The title compound was synthesized according to the related literature (Purushothaman & Raghunathan, 2009). A solution of salicylaldehyde (2 mmol in 10 ml acetone) was slowly added dropwise to a suspension of 1,2-bis(2-(bromomethyl)phenoxy) ethane (1 mmol in 20 ml acetone) prepared according to the reported method (Zhang et al., 2010) and anhydrous potassium carbonate (2 mmol). The mixture was refluxed for 8 h. The reaction mixture was then cooled to room temperature and filtered. After this period, the residue was dissolved and extracted by ethyl acetate. The combined organical layer was washed with water and then dried with anhydrous sodium sulfate. After that the solvent was evaporated under vacuum to give the product. The obtained residue was purified by flash column chromatography on silica gel using petroleum ether/ethylacetate (5:2) mixtures as eluent.

Refinement top

All H atoms were found from difference Fourier maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93Å to 0.98Å and with Uiso(H) = 1.2 Ueq(C) of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···Bri interactions in the crystal structure of the title compound. Symmetry code: (i) -x+1, y+1/2, -z+1/2).
2-(2-{2-[2-(Dibromomethyl)phenoxy]ethoxy}benzyloxy)benzaldehyde top
Crystal data top
C23H20Br2O4F(000) = 1040
Mr = 520.19Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1808 reflections
a = 12.867 (7) Åθ = 2.3–17.5°
b = 18.07 (1) ŵ = 3.85 mm1
c = 9.649 (5) ÅT = 296 K
β = 108.955 (6)°Block, colourless
V = 2122 (2) Å30.34 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3944 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.281, Tmax = 0.341k = 2121
15392 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.1049P)2 + 0.4797P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3944 reflectionsΔρmax = 0.79 e Å3
263 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (3)
Crystal data top
C23H20Br2O4V = 2122 (2) Å3
Mr = 520.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.867 (7) ŵ = 3.85 mm1
b = 18.07 (1) ÅT = 296 K
c = 9.649 (5) Å0.34 × 0.32 × 0.28 mm
β = 108.955 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3944 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1905 reflections with I > 2σ(I)
Tmin = 0.281, Tmax = 0.341Rint = 0.063
15392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.02Δρmax = 0.79 e Å3
3944 reflectionsΔρmin = 0.75 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56817 (7)0.30130 (6)0.29797 (13)0.1092 (5)
Br20.37069 (9)0.31794 (5)0.00106 (10)0.0986 (5)
C10.1269 (7)0.7137 (4)0.1294 (8)0.069 (2)
H10.16210.67770.09190.083*
C20.0059 (6)0.7075 (3)0.0932 (6)0.0509 (16)
C30.0495 (7)0.7556 (4)0.1572 (7)0.0658 (19)
H30.00960.79220.21990.079*
C40.1583 (7)0.7514 (4)0.1323 (8)0.073 (2)
H40.19320.78460.17610.088*
C50.2176 (6)0.6962 (4)0.0397 (8)0.070 (2)
H50.29300.69290.02130.084*
C60.1660 (6)0.6458 (4)0.0260 (7)0.0551 (16)
H60.20620.60850.08650.066*
C70.0548 (6)0.6522 (3)0.0001 (6)0.0511 (16)
C80.0522 (5)0.5531 (3)0.1655 (7)0.0487 (15)
H8A0.10570.57750.24740.058*
H8B0.09050.51820.12290.058*
C90.0317 (5)0.5130 (3)0.2169 (6)0.0470 (15)
C100.1419 (6)0.5287 (4)0.1643 (7)0.0617 (18)
H100.16760.56640.09610.074*
C110.2162 (6)0.4878 (5)0.2135 (8)0.070 (2)
H110.29100.49790.17660.084*
C120.1791 (7)0.4340 (4)0.3138 (8)0.071 (2)
H120.22840.40730.34650.085*
C130.0685 (6)0.4184 (4)0.3684 (7)0.0602 (17)
H130.04360.38110.43780.072*
C140.0057 (5)0.4576 (3)0.3211 (7)0.0487 (16)
C150.1611 (5)0.3890 (3)0.4722 (6)0.0536 (16)
H15A0.13810.34120.42680.064*
H15B0.13470.39390.55520.064*
C160.2849 (6)0.3950 (4)0.5223 (7)0.0670 (19)
H16A0.30660.44370.56390.080*
H16B0.31630.35860.59840.080*
C170.3652 (5)0.4407 (4)0.3435 (7)0.0556 (17)
C180.3584 (6)0.5154 (4)0.3772 (8)0.0675 (19)
H180.32260.52950.44260.081*
C190.4055 (6)0.5681 (4)0.3121 (9)0.077 (2)
H190.40460.61760.33810.092*
C200.4531 (6)0.5485 (5)0.2106 (9)0.076 (2)
H200.48250.58460.16560.091*
C210.4579 (6)0.4750 (5)0.1743 (8)0.071 (2)
H210.49060.46220.10470.086*
C220.4145 (5)0.4197 (4)0.2401 (7)0.0536 (16)
C230.4210 (6)0.3400 (4)0.2060 (8)0.0657 (19)
H230.37250.31350.24900.079*
O10.1819 (4)0.7608 (3)0.2023 (5)0.0824 (16)
O20.0053 (3)0.6067 (2)0.0578 (4)0.0549 (11)
O30.1171 (4)0.4474 (2)0.3681 (4)0.0560 (11)
O40.3266 (4)0.3834 (2)0.4054 (5)0.0737 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0693 (7)0.0994 (8)0.1485 (10)0.0213 (5)0.0212 (6)0.0112 (6)
Br20.1243 (9)0.0954 (7)0.0791 (7)0.0014 (5)0.0372 (6)0.0179 (5)
C10.084 (6)0.059 (4)0.059 (5)0.000 (4)0.015 (4)0.000 (4)
C20.070 (5)0.037 (3)0.042 (4)0.006 (3)0.013 (3)0.004 (3)
C30.087 (6)0.052 (4)0.054 (4)0.005 (4)0.017 (4)0.002 (3)
C40.096 (6)0.059 (5)0.065 (5)0.022 (4)0.027 (5)0.010 (4)
C50.063 (5)0.082 (5)0.064 (5)0.015 (4)0.019 (4)0.008 (4)
C60.058 (5)0.051 (4)0.049 (4)0.005 (3)0.008 (3)0.001 (3)
C70.062 (5)0.046 (4)0.041 (4)0.004 (3)0.011 (3)0.007 (3)
C80.056 (4)0.040 (3)0.051 (4)0.001 (3)0.019 (3)0.004 (3)
C90.056 (4)0.044 (4)0.042 (4)0.000 (3)0.016 (3)0.010 (3)
C100.073 (5)0.055 (4)0.060 (4)0.005 (4)0.026 (4)0.005 (3)
C110.051 (4)0.087 (5)0.077 (5)0.013 (4)0.030 (4)0.016 (5)
C120.083 (6)0.078 (5)0.071 (5)0.028 (4)0.049 (5)0.019 (4)
C130.069 (5)0.062 (4)0.051 (4)0.008 (4)0.021 (4)0.002 (3)
C140.058 (5)0.045 (4)0.049 (4)0.005 (3)0.025 (3)0.001 (3)
C150.071 (5)0.056 (4)0.034 (3)0.001 (3)0.017 (3)0.006 (3)
C160.082 (5)0.069 (5)0.053 (4)0.004 (4)0.025 (4)0.006 (4)
C170.047 (4)0.060 (4)0.056 (4)0.000 (3)0.012 (3)0.003 (3)
C180.064 (5)0.065 (5)0.075 (5)0.008 (4)0.024 (4)0.011 (4)
C190.064 (5)0.057 (4)0.086 (6)0.004 (4)0.006 (5)0.003 (4)
C200.063 (5)0.082 (6)0.079 (6)0.023 (4)0.020 (4)0.013 (4)
C210.061 (5)0.088 (6)0.064 (5)0.019 (4)0.018 (4)0.002 (4)
C220.038 (4)0.069 (4)0.052 (4)0.005 (3)0.011 (3)0.003 (3)
C230.061 (5)0.064 (4)0.081 (5)0.007 (3)0.035 (4)0.001 (4)
O10.089 (4)0.072 (3)0.068 (3)0.029 (3)0.000 (3)0.008 (3)
O20.058 (3)0.050 (3)0.057 (3)0.002 (2)0.019 (2)0.014 (2)
O30.061 (3)0.058 (3)0.051 (3)0.002 (2)0.021 (2)0.011 (2)
O40.097 (4)0.059 (3)0.084 (3)0.006 (3)0.056 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C231.941 (7)C12—C131.377 (10)
Br2—C231.931 (7)C12—H120.9300
C1—O11.182 (8)C13—C141.380 (8)
C1—C21.485 (10)C13—H130.9300
C1—H10.9300C14—O31.368 (7)
C2—C31.389 (9)C15—O31.441 (7)
C2—C71.400 (8)C15—C161.510 (9)
C3—C41.344 (10)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.389 (10)C16—O41.414 (7)
C4—H40.9300C16—H16A0.9700
C5—C61.395 (9)C16—H16B0.9700
C5—H50.9300C17—O41.367 (7)
C6—C71.376 (9)C17—C181.397 (9)
C6—H60.9300C17—C221.397 (9)
C7—O21.366 (7)C18—C191.385 (10)
C8—O21.437 (7)C18—H180.9300
C8—C91.510 (8)C19—C201.361 (11)
C8—H8A0.9700C19—H190.9300
C8—H8B0.9700C20—C211.379 (11)
C9—C101.372 (9)C20—H200.9300
C9—C141.390 (8)C21—C221.394 (9)
C10—C111.408 (9)C21—H210.9300
C10—H100.9300C22—C231.486 (9)
C11—C121.344 (10)C23—H230.9800
C11—H110.9300
O1—C1—C2124.9 (7)O3—C14—C13125.8 (6)
O1—C1—H1117.5O3—C14—C9114.6 (5)
C2—C1—H1117.5C13—C14—C9119.7 (6)
C3—C2—C7118.2 (7)O3—C15—C16107.8 (5)
C3—C2—C1119.9 (6)O3—C15—H15A110.1
C7—C2—C1121.9 (6)C16—C15—H15A110.1
C4—C3—C2122.7 (7)O3—C15—H15B110.1
C4—C3—H3118.7C16—C15—H15B110.1
C2—C3—H3118.7H15A—C15—H15B108.5
C3—C4—C5118.6 (7)O4—C16—C15111.6 (5)
C3—C4—H4120.7O4—C16—H16A109.3
C5—C4—H4120.7C15—C16—H16A109.3
C4—C5—C6121.2 (7)O4—C16—H16B109.3
C4—C5—H5119.4C15—C16—H16B109.3
C6—C5—H5119.4H16A—C16—H16B108.0
C7—C6—C5118.8 (6)O4—C17—C18124.7 (6)
C7—C6—H6120.6O4—C17—C22114.9 (6)
C5—C6—H6120.6C18—C17—C22120.4 (6)
O2—C7—C6124.6 (6)C19—C18—C17119.3 (7)
O2—C7—C2114.9 (6)C19—C18—H18120.4
C6—C7—C2120.5 (6)C17—C18—H18120.4
O2—C8—C9107.8 (5)C20—C19—C18120.8 (7)
O2—C8—H8A110.1C20—C19—H19119.6
C9—C8—H8A110.1C18—C19—H19119.6
O2—C8—H8B110.1C19—C20—C21120.1 (7)
C9—C8—H8B110.1C19—C20—H20119.9
H8A—C8—H8B108.5C21—C20—H20119.9
C10—C9—C14119.3 (6)C20—C21—C22121.1 (7)
C10—C9—C8122.8 (6)C20—C21—H21119.5
C14—C9—C8117.8 (5)C22—C21—H21119.5
C9—C10—C11120.0 (7)C17—C22—C21118.2 (7)
C9—C10—H10120.0C17—C22—C23119.5 (6)
C11—C10—H10120.0C21—C22—C23122.3 (6)
C12—C11—C10120.1 (7)C22—C23—Br2113.9 (5)
C12—C11—H11120.0C22—C23—Br1111.4 (5)
C10—C11—H11120.0Br2—C23—Br1110.4 (3)
C11—C12—C13120.3 (6)C22—C23—H23106.9
C11—C12—H12119.8Br2—C23—H23106.9
C13—C12—H12119.8Br1—C23—H23106.9
C14—C13—C12120.6 (7)C7—O2—C8118.4 (5)
C14—C13—H13119.7C14—O3—C15117.5 (5)
C12—C13—H13119.7C17—O4—C16121.6 (5)
O1—C1—C2—C36.0 (10)O3—C15—C16—O463.5 (7)
O1—C1—C2—C7176.8 (6)O4—C17—C18—C19176.8 (6)
C7—C2—C3—C40.6 (10)C22—C17—C18—C193.0 (10)
C1—C2—C3—C4178.0 (6)C17—C18—C19—C203.4 (11)
C2—C3—C4—C50.6 (10)C18—C19—C20—C211.9 (11)
C3—C4—C5—C60.3 (10)C19—C20—C21—C220.0 (11)
C4—C5—C6—C71.1 (10)O4—C17—C22—C21178.7 (6)
C5—C6—C7—O2179.8 (5)C18—C17—C22—C211.1 (9)
C5—C6—C7—C21.1 (9)O4—C17—C22—C230.1 (9)
C3—C2—C7—O2179.5 (5)C18—C17—C22—C23179.9 (6)
C1—C2—C7—O22.2 (8)C20—C21—C22—C170.4 (10)
C3—C2—C7—C60.3 (9)C20—C21—C22—C23178.3 (7)
C1—C2—C7—C6177.0 (6)C17—C22—C23—Br2130.6 (5)
O2—C8—C9—C100.0 (8)C21—C22—C23—Br250.7 (8)
O2—C8—C9—C14179.3 (5)C17—C22—C23—Br1103.8 (6)
C14—C9—C10—C111.3 (9)C21—C22—C23—Br175.0 (7)
C8—C9—C10—C11178.0 (5)C6—C7—O2—C86.8 (8)
C9—C10—C11—C121.0 (10)C2—C7—O2—C8174.1 (5)
C10—C11—C12—C130.4 (10)C9—C8—O2—C7177.1 (4)
C11—C12—C13—C140.0 (10)C13—C14—O3—C152.5 (8)
C12—C13—C14—O3179.5 (6)C9—C14—O3—C15177.8 (5)
C12—C13—C14—C90.3 (9)C16—C15—O3—C14172.6 (5)
C10—C9—C14—O3178.8 (5)C18—C17—O4—C166.4 (10)
C8—C9—C14—O31.8 (7)C22—C17—O4—C16173.5 (5)
C10—C9—C14—C131.0 (9)C15—C16—O4—C17105.9 (7)
C8—C9—C14—C13178.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.422.753 (9)101
C10—H10···O20.932.352.710 (8)102
C23—H23···O40.982.192.700 (8)111
C5—H5···Br1i0.933.033.529 (7)116
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H20Br2O4
Mr520.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.867 (7), 18.07 (1), 9.649 (5)
β (°) 108.955 (6)
V3)2122 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.34 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.281, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
15392, 3944, 1905
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.207, 1.02
No. of reflections3944
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.75

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.422.753 (9)101
C10—H10···O20.932.352.710 (8)102
C23—H23···O40.982.192.700 (8)111
C5—H5···Br1i0.933.033.529 (7)116
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Fundamental Research Funds for the Central Universities (lzujbky-2010-43) and the Research Foundation for Young Teachers Possessing a Doctoral Degree of Lanzhou University for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C.-D., Su, H., Zhao, J., Zhao, B.-X., Zhang, S.-L. & Miao, J.-Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFillebeen, C. & Pantopoulos, K. (2010). J. Hepatol. 53, 995–999.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJahnke, K., Podschun, B., Schnackerz, K. D., Kautz, J. & Cook, P. F. (1993). Biochemistry, 32, 5160–5166.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMori, K., Kawasaki, T., Sueoka, S. & Akiyama, T. (2010). Org. Lett. 12, 1732–1735.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPelttari, E., Karhumaki, E., Langshaw, J., Peräkylä, H. & Elo, H. (2007). Z. Naturforsch Teil C, 62, 487–497.  CAS Google Scholar
First citationPotapov, V. V., Fetisova, N. A., Nikitin, A. V. & Ivachtchenko, A. V. (2009). Mendeleev Commun. 19, 287–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationPurushothaman, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6848–6850.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-W., Wu, W.-Y., Su, Z.-X., Zhang, A.-J. & Liu, X. (2010). Acta Cryst. E66, o2229.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds