organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(9,9-Di­ethyl-9H-fluoren-2-yl)-1-benzo­furan

aCardinal Tien College of Healthcare & Management, Taipei, Taiwan 231, and bInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
*Correspondence e-mail: pshuang@ctcn.edu.tw

(Received 16 October 2010; accepted 23 February 2011; online 26 February 2011)

In the title compound, C25H22O, the dihedral angle between the benzofuran and fluorene ring systems is 9.06 (6)°, and that between the two benzene rings of the fluorene system is 1.78 (12)°. Weak inter­molecular C—H⋯π inter­actions help to stabilize the crystal structure.

Related literature

The title compound is a precursor for the production of hole-transporting and/or emitting materials, see: Shen et al. (2005[Shen, J. Y., Lee, C. Y., Huang, T.-H., Lin, J. T., Tao, Y.-T., Chien, C.-H. & Tsai, C. (2005). J. Mater. Chem. 15, 2455-2463.]). For a related structure, see: Bak et al. (1961[Bak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58-63.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22O

  • Mr = 338.43

  • Orthorhombic, P 21 21 21

  • a = 7.5277 (13) Å

  • b = 12.9969 (19) Å

  • c = 18.438 (3) Å

  • V = 1803.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.2 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 8855 measured reflections

  • 2118 independent reflections

  • 1518 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.146

  • S = 1.03

  • 2118 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C23–C28, O29/C21–C23/C28 and C2–C5/C11/C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.95 2.99 3.643 (5) 127
C22—H22⋯Cg1ii 0.95 2.70 3.500 (4) 143
C24—H24⋯Cg2ii 0.95 2.85 3.569 (5) 133
C27—H27⋯Cg2iii 0.95 2.75 3.558 (5) 143
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), has been shown to be an precursor for the production of hole transporting and/or emitting materials (Shen et al., 2005). A one pot synthesis of a benzofuran substituted in the 2-position has been achieved by Pd(0) complex catalyzed Sonogashira coupling reaction of 2-iodophenol with terminal alkynes, followed by cyclization of the internal alkynes formed, in high yield (see scheme 1). The molecular structure is shown in Fig. 1. The dihedral angle between the benzofuran and fluorene rings is 9.06 (6)°, and that between the two benzene rings at fluorene is 1.78 (12)°. Weak intermolecular C—H···π interactions help to stabilize the crystal structure.

Related literature top

The title compound is a precursor for the production of hole-transporting and/or emitting materials, see: Shen et al. (2005). For a related structure, see: Bak et al. (1961).

Experimental top

The compound was synthesized by the following procedure. A two-necked round-bottomed flask was charged with PdCl2(PPh3)2 (100 mg), 9,9-diethyl-2-ethynyl-9H-fluorene (1.35 g, 5.46 mmol), CuI (30 mg), 2-iodophenol (1.00 g, 4.55 mmol), triethylamine (1.3 ml), and DMF (10 ml), and the reaction mixture stirred under nitrogen and heated at 333 K for 24 h. After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over anhydrous MgSO4 and removing the volatiles, the residue was purified by column chromatography using CH2Cl2/n-hexane as eluent, followed by recrystallization from CH2Cl2 and hexane to yield 0.9 g (59%) of (I) as a white solid. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature. 1H NMR (CDCl3): 7.84 (d, 2 H, J = 7.97 Hz), 7.73 (dd, 2 H, J = 7.77 Hz), 7.55 (dd, 2 H, J = 7.64 Hz), 7.35–7.31 (m, 3 H), 7.24 (tt, 2 H, J = 8.31 Hz), 7.06 (s, 1 H), 2.09 (q, 4 H, J = 7.07 Hz), 0.34 (t, 6 H, J = 6.72 Hz). FAB MS (m/e): 338.1 (M+) Anal. Calcd for C25H22O: C, 88.72; H, 6.55. Found: C, 88.92; H, 6.51.

Refinement top

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular structure of (I) with 30% probability displacement ellipsoids, showing the atom-numbering scheme employed. H atoms are shown as small spheres of the arbitrary radii.
2-(9,9-Diethyl-9H-fluoren-2-yl)-1-benzofuran top
Crystal data top
C25H22OF(000) = 720
Mr = 338.43Dx = 1.246 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 525 reflections
a = 7.5277 (13) Åθ = 2.7–20.4°
b = 12.9969 (19) ŵ = 0.07 mm1
c = 18.438 (3) ÅT = 100 K
V = 1803.9 (5) Å3Prism, colourless
Z = 40.2 × 0.14 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.103
Graphite monochromatorθmax = 26.4°, θmin = 1.9°
ω and ϕ scansh = 89
8855 measured reflectionsk = 1616
2118 independent reflectionsl = 1723
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2118 reflectionsΔρmax = 0.23 e Å3
236 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (2)
Crystal data top
C25H22OV = 1803.9 (5) Å3
Mr = 338.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5277 (13) ŵ = 0.07 mm1
b = 12.9969 (19) ÅT = 100 K
c = 18.438 (3) Å0.2 × 0.14 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1518 reflections with I > 2σ(I)
8855 measured reflectionsRint = 0.103
2118 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2118 reflectionsΔρmin = 0.26 e Å3
236 parameters
Special details top

Experimental. 1H NMR (CDCl3): 7.77 (d, J = 8.2, 4H), 7.64 (d, J = 8.2, 4H). FAB MS (m/e): 462 (M+). Analysis calculated for C18H8F6N2O4S: C 46.76, H 1.74, N 6.06%; found: C 46.80, H 1.88, N 5.79%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O290.8727 (4)0.12706 (16)0.89298 (15)0.0233 (6)
C10.6113 (5)0.4536 (2)0.6667 (2)0.0210 (9)
C20.5957 (6)0.4834 (3)0.5267 (2)0.0241 (9)
H20.53550.54730.53130.029*
C30.6407 (6)0.4451 (3)0.4588 (2)0.0274 (10)
H30.60920.48280.41660.033*
C40.7307 (6)0.3529 (2)0.4517 (2)0.0248 (9)
H40.76100.32840.40480.030*
C50.7768 (6)0.2960 (2)0.5121 (2)0.0250 (9)
H50.83820.23250.50700.030*
C60.8406 (5)0.2003 (2)0.6748 (2)0.0234 (9)
H60.88850.15410.64000.028*
C70.8484 (5)0.1773 (3)0.7477 (2)0.0246 (9)
H70.90380.11520.76280.030*
C80.7765 (5)0.2434 (2)0.7995 (2)0.0203 (8)
C90.6972 (5)0.3362 (2)0.7766 (2)0.0221 (9)
H90.64850.38230.81130.027*
C100.6904 (5)0.3599 (2)0.7040 (2)0.0204 (9)
C110.6400 (5)0.4271 (2)0.5872 (2)0.0197 (9)
C120.7322 (5)0.3329 (2)0.5805 (2)0.0210 (8)
C130.7618 (5)0.2920 (2)0.6527 (2)0.0211 (8)
C210.7791 (5)0.2166 (2)0.8762 (2)0.0218 (9)
C220.7057 (6)0.2573 (2)0.9356 (2)0.0236 (9)
H220.63810.31890.93760.028*
C230.7468 (6)0.1913 (2)0.9960 (2)0.0238 (9)
C240.7066 (6)0.1876 (3)1.0693 (2)0.0293 (9)
H240.63880.24071.09140.035*
C250.7675 (6)0.1048 (3)1.1097 (2)0.0311 (10)
H250.74040.10121.16000.037*
C260.8683 (6)0.0264 (3)1.0779 (2)0.0285 (10)
H260.90810.02951.10690.034*
C270.9113 (6)0.0287 (3)1.0048 (2)0.0251 (9)
H270.98020.02380.98260.030*
C280.8480 (5)0.1119 (2)0.9661 (2)0.0203 (9)
C310.7154 (6)0.5539 (2)0.6825 (2)0.0283 (10)
H31A0.84250.54090.67220.034*
H31B0.67450.60720.64790.034*
C320.7009 (6)0.5975 (3)0.7583 (2)0.0326 (10)
H32A0.77270.66020.76180.049*
H32B0.74410.54670.79330.049*
H32C0.57640.61390.76880.049*
C330.4142 (5)0.4697 (3)0.6858 (2)0.0221 (9)
H33A0.40390.47980.73880.027*
H33B0.37240.53360.66200.027*
C340.2925 (6)0.3820 (2)0.6635 (3)0.0313 (10)
H34A0.17030.39800.67800.047*
H34B0.33090.31850.68750.047*
H34C0.29780.37300.61080.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O290.0224 (15)0.0231 (12)0.0244 (16)0.0027 (12)0.0021 (14)0.0000 (11)
C10.021 (2)0.0181 (16)0.024 (2)0.0023 (16)0.0017 (19)0.0008 (16)
C20.026 (2)0.0220 (17)0.024 (2)0.0022 (16)0.000 (2)0.0014 (16)
C30.032 (3)0.0265 (18)0.024 (2)0.0026 (18)0.001 (2)0.0017 (16)
C40.027 (2)0.0283 (17)0.019 (2)0.0023 (18)0.001 (2)0.0051 (15)
C50.026 (2)0.0229 (16)0.026 (2)0.0002 (17)0.000 (2)0.0015 (16)
C60.022 (2)0.0225 (16)0.025 (2)0.0038 (16)0.0009 (19)0.0049 (16)
C70.027 (2)0.0220 (17)0.025 (2)0.0029 (16)0.0023 (19)0.0009 (16)
C80.019 (2)0.0231 (16)0.0194 (19)0.0041 (17)0.0026 (18)0.0015 (15)
C90.025 (2)0.0198 (16)0.021 (2)0.0004 (16)0.0024 (18)0.0031 (15)
C100.018 (2)0.0212 (16)0.022 (2)0.0003 (16)0.0005 (18)0.0003 (15)
C110.017 (2)0.0229 (16)0.019 (2)0.0007 (15)0.0025 (18)0.0027 (15)
C120.021 (2)0.0201 (16)0.022 (2)0.0016 (16)0.0018 (19)0.0024 (15)
C130.021 (2)0.0202 (16)0.022 (2)0.0023 (16)0.0017 (19)0.0011 (15)
C210.017 (2)0.0174 (16)0.031 (2)0.0041 (16)0.0059 (19)0.0002 (15)
C220.022 (2)0.0228 (16)0.026 (2)0.0021 (17)0.0021 (19)0.0003 (16)
C230.021 (2)0.0260 (17)0.025 (2)0.0016 (17)0.0014 (19)0.0023 (15)
C240.024 (2)0.0362 (19)0.027 (2)0.0018 (19)0.004 (2)0.0003 (18)
C250.027 (2)0.039 (2)0.028 (2)0.005 (2)0.000 (2)0.0063 (18)
C260.025 (2)0.0282 (18)0.032 (3)0.0032 (18)0.009 (2)0.0078 (18)
C270.025 (2)0.0238 (17)0.027 (2)0.0008 (17)0.0040 (19)0.0010 (17)
C280.022 (2)0.0253 (17)0.0139 (19)0.0060 (17)0.0019 (17)0.0008 (15)
C310.033 (3)0.0232 (17)0.029 (2)0.0009 (18)0.003 (2)0.0008 (16)
C320.034 (3)0.0305 (19)0.033 (3)0.0078 (19)0.002 (2)0.0069 (17)
C330.025 (2)0.0215 (17)0.020 (2)0.0028 (17)0.0031 (18)0.0003 (15)
C340.027 (2)0.0326 (19)0.034 (2)0.0024 (19)0.001 (2)0.0010 (18)
Geometric parameters (Å, º) top
O29—C281.374 (5)C12—C131.452 (5)
O29—C211.395 (4)C21—C221.336 (5)
C1—C101.520 (5)C22—C231.438 (5)
C1—C111.521 (5)C22—H220.9500
C1—C331.539 (5)C23—C241.386 (6)
C1—C311.548 (5)C23—C281.397 (5)
C2—C111.375 (5)C24—C251.388 (5)
C2—C31.389 (5)C24—H240.9500
C2—H20.9500C25—C261.400 (5)
C3—C41.382 (5)C25—H250.9500
C3—H30.9500C26—C271.386 (6)
C4—C51.381 (5)C26—H260.9500
C4—H40.9500C27—C281.381 (5)
C5—C121.391 (5)C27—H270.9500
C5—H50.9500C31—C321.512 (6)
C6—C71.377 (6)C31—H31A0.9900
C6—C131.391 (5)C31—H31B0.9900
C6—H60.9500C32—H32A0.9800
C7—C81.396 (5)C32—H32B0.9800
C7—H70.9500C32—H32C0.9800
C8—C91.410 (5)C33—C341.519 (5)
C8—C211.456 (5)C33—H33A0.9900
C9—C101.374 (5)C33—H33B0.9900
C9—H90.9500C34—H34A0.9800
C10—C131.401 (5)C34—H34B0.9800
C11—C121.412 (5)C34—H34C0.9800
C28—O29—C21105.6 (3)C21—C22—C23108.0 (3)
C10—C1—C11101.5 (3)C21—C22—H22126.0
C10—C1—C33112.6 (3)C23—C22—H22126.0
C11—C1—C33112.8 (3)C24—C23—C28118.6 (3)
C10—C1—C31113.0 (3)C24—C23—C22136.8 (4)
C11—C1—C31107.4 (3)C28—C23—C22104.6 (3)
C33—C1—C31109.3 (3)C23—C24—C25118.6 (4)
C11—C2—C3118.7 (3)C23—C24—H24120.7
C11—C2—H2120.6C25—C24—H24120.7
C3—C2—H2120.6C24—C25—C26121.2 (4)
C4—C3—C2121.0 (4)C24—C25—H25119.4
C4—C3—H3119.5C26—C25—H25119.4
C2—C3—H3119.5C27—C26—C25121.3 (4)
C5—C4—C3120.7 (4)C27—C26—H26119.4
C5—C4—H4119.6C25—C26—H26119.4
C3—C4—H4119.6C28—C27—C26116.0 (4)
C4—C5—C12119.0 (3)C28—C27—H27122.0
C4—C5—H5120.5C26—C27—H27122.0
C12—C5—H5120.5O29—C28—C27124.9 (3)
C7—C6—C13119.3 (3)O29—C28—C23110.8 (3)
C7—C6—H6120.3C27—C28—C23124.3 (4)
C13—C6—H6120.3C32—C31—C1116.9 (3)
C6—C7—C8121.2 (3)C32—C31—H31A108.1
C6—C7—H7119.4C1—C31—H31A108.1
C8—C7—H7119.4C32—C31—H31B108.1
C7—C8—C9119.0 (3)C1—C31—H31B108.1
C7—C8—C21120.8 (3)H31A—C31—H31B107.3
C9—C8—C21120.1 (3)C31—C32—H32A109.5
C10—C9—C8120.0 (3)C31—C32—H32B109.5
C10—C9—H9120.0H32A—C32—H32B109.5
C8—C9—H9120.0C31—C32—H32C109.5
C9—C10—C13120.1 (3)H32A—C32—H32C109.5
C9—C10—C1129.4 (3)H32B—C32—H32C109.5
C13—C10—C1110.5 (3)C34—C33—C1114.7 (3)
C2—C11—C12120.6 (4)C34—C33—H33A108.6
C2—C11—C1128.8 (3)C1—C33—H33A108.6
C12—C11—C1110.5 (3)C34—C33—H33B108.6
C5—C12—C11119.8 (3)C1—C33—H33B108.6
C5—C12—C13131.9 (3)H33A—C33—H33B107.6
C11—C12—C13108.3 (3)C33—C34—H34A109.5
C6—C13—C10120.4 (4)C33—C34—H34B109.5
C6—C13—C12130.4 (3)H34A—C34—H34B109.5
C10—C13—C12109.2 (3)C33—C34—H34C109.5
C22—C21—O29110.9 (3)H34A—C34—H34C109.5
C22—C21—C8134.1 (3)H34B—C34—H34C109.5
O29—C21—C8115.0 (3)
C11—C2—C3—C40.9 (6)C1—C10—C13—C121.4 (4)
C2—C3—C4—C50.5 (6)C5—C12—C13—C62.2 (7)
C3—C4—C5—C120.2 (6)C11—C12—C13—C6177.5 (4)
C13—C6—C7—C80.9 (6)C5—C12—C13—C10179.8 (4)
C6—C7—C8—C91.0 (6)C11—C12—C13—C100.5 (4)
C6—C7—C8—C21177.6 (4)C28—O29—C21—C222.2 (4)
C7—C8—C9—C100.5 (6)C28—O29—C21—C8175.7 (3)
C21—C8—C9—C10178.1 (4)C7—C8—C21—C22171.3 (4)
C8—C9—C10—C130.2 (6)C9—C8—C21—C227.3 (7)
C8—C9—C10—C1179.4 (4)C7—C8—C21—O296.0 (5)
C11—C1—C10—C9176.8 (4)C9—C8—C21—O29175.4 (3)
C33—C1—C10—C955.9 (6)O29—C21—C22—C231.4 (5)
C31—C1—C10—C968.5 (5)C8—C21—C22—C23175.9 (4)
C11—C1—C10—C132.5 (4)C21—C22—C23—C24177.1 (5)
C33—C1—C10—C13123.3 (3)C21—C22—C23—C280.1 (4)
C31—C1—C10—C13112.2 (4)C28—C23—C24—C250.5 (6)
C3—C2—C11—C121.1 (6)C22—C23—C24—C25176.5 (4)
C3—C2—C11—C1177.8 (4)C23—C24—C25—C260.3 (6)
C10—C1—C11—C2179.8 (4)C24—C25—C26—C270.1 (6)
C33—C1—C11—C259.6 (5)C25—C26—C27—C280.4 (6)
C31—C1—C11—C261.0 (5)C21—O29—C28—C27176.8 (4)
C10—C1—C11—C122.8 (4)C21—O29—C28—C232.1 (4)
C33—C1—C11—C12123.5 (3)C26—C27—C28—O29178.5 (4)
C31—C1—C11—C12116.0 (3)C26—C27—C28—C230.3 (6)
C4—C5—C12—C110.4 (6)C24—C23—C28—O29179.1 (4)
C4—C5—C12—C13179.9 (4)C22—C23—C28—O291.2 (4)
C2—C11—C12—C50.8 (6)C24—C23—C28—C270.2 (6)
C1—C11—C12—C5178.1 (4)C22—C23—C28—C27177.7 (4)
C2—C11—C12—C13179.4 (4)C10—C1—C31—C3271.1 (5)
C1—C11—C12—C132.1 (4)C11—C1—C31—C32177.8 (3)
C7—C6—C13—C100.3 (6)C33—C1—C31—C3255.1 (5)
C7—C6—C13—C12178.1 (4)C10—C1—C33—C3461.3 (5)
C9—C10—C13—C60.3 (6)C11—C1—C33—C3452.8 (4)
C1—C10—C13—C6179.6 (3)C31—C1—C33—C34172.2 (3)
C9—C10—C13—C12178.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C23–C28, O29/C21–C23/C28 and C2–C5/C11/C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.993.643 (5)127
C22—H22···Cg1ii0.952.703.500 (4)143
C24—H24···Cg2ii0.952.853.569 (5)133
C27—H27···Cg2iii0.952.753.558 (5)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+2; (iii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H22O
Mr338.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.5277 (13), 12.9969 (19), 18.438 (3)
V3)1803.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.2 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8855, 2118, 1518
Rint0.103
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.146, 1.03
No. of reflections2118
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C23–C28, O29/C21–C23/C28 and C2–C5/C11/C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.993.643 (5)127
C22—H22···Cg1ii0.952.703.500 (4)143
C24—H24···Cg2ii0.952.853.569 (5)133
C27—H27···Cg2iii0.952.753.558 (5)143
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+2; (iii) x+2, y1/2, z+3/2.
 

Acknowledgements

This work was partially supported by the Institute of Chemistry, Academia Sinica, and Cardinal Tien College of Healthcare & Management.

References

First citationBak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58–63.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J. Y., Lee, C. Y., Huang, T.-H., Lin, J. T., Tao, Y.-T., Chien, C.-H. & Tsai, C. (2005). J. Mater. Chem. 15, 2455–2463.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds