metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)bis­­(3-meth­­oxy­benzoato-κ2O1,O1′)copper(II) mono­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 24 November 2010; accepted 15 February 2011; online 19 February 2011)

The title compound, [Cu(C8H7O3)2(C10H8N2)]·H2O, is comprised of a CuII ion, two 3-meth­oxy­benzoate ligands, a 2,2′-bipyridine (bipy) ligand and one uncoordinated water mol­ecule. The CuII ion and the water O atom lie on a twofold axis. The CuII ion exhibits a six-coordinate distorted octa­hedral geometry, with two N atoms from the bipy ligand [Cu—N = 1.9996 (16) Å] and four O atoms from two 3-meth­oxy­benzoate ligands [Cu—O = 1.9551 (15) and 2.6016 (16) Å]. The mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For hydrogen bonds and crystal engineering, see: Aakeröy & Seddon (1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For potential applications of transition metal complexes, see: Liu et al. (2007[Liu, Y. L., Eubank, J. F., Cairns, A. J., Eckert, J., Kravtsov, V. C., Luebke, R. & Eddaoudi, M. (2007). Angew. Chem. Int. Ed. 46, 3278-3283.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.]). For carboxylate compounds with six-coordinate metal atoms, see: Liu et al. (2010[Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.]); Su et al. (2005[Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m379-m381.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O3)2(C10H8N2)]·H2O

  • Mr = 540.01

  • Monoclinic, C 2/c

  • a = 19.888 (4) Å

  • b = 10.887 (2) Å

  • c = 11.612 (2) Å

  • β = 103.62 (3)°

  • V = 2443.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.710, Tmax = 0.780

  • 12080 measured reflections

  • 2796 independent reflections

  • 2391 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.05

  • 2796 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O1 0.88 2.24 3.023 (3) 147
C12—H12A⋯O4ii 0.93 2.41 3.339 (3) 178
C11—H11A⋯O3ii 0.93 2.57 3.483 (3) 166
C10—H10A⋯O2iii 0.93 2.66 3.342 (3) 131
Symmetry codes: (ii) x, y+1, z; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976)[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, a variety of supramolecular architectures based on hydrogen bonds, π···π interactions have been achieved by using transition metal centers and organic ligands (Aakeroy et al., 1993), they have potential application in catalysis, gas storage, and in molecular–based magnetic materials (Liu et al., 2007, Shibasaki et al., 2002). Herein, we are interested in self-assemblies of Cu2+ ions and bipy with 3–methoxybenzoic acid, which led to the preparation of [Cu(bipy)2(C8H8O3)2].H2O.

The title compound, [Cu(bipy)2(C8H8O3)2].H2O, is comprised of a CuII ion, two 3–methoxybenzoate ligands, a 2,2'–bipyridine(bipy) ligand and one lattice H2O molecule. As illustrated in Fig.1, the Cu ion and water O atom lie on a two fold axis. The CuII ion has a six–coordinate distorted octahedral geometry with two N atoms from the bipy ligand [Cu–N = 1.9996 (16) Å] and four O atoms from two 3–methoxybenzoate ligands [Cu–O = 1.9551 (15) and 2.6016 (16) Å]. Owing to geometric constraints and the Jahn–Teller effect, the Cu–O bonds in the axial direction are longer than in the equatorial plane. Two O atoms and two N atoms occupy the equatorial plane position with the r.m.s. deviation from the ideal plane of 0.214 Å, while two O atoms lie in the apical positions with an axis angle of 140.53 (5)° showing a large deviation from the normal 180°,which is also seen in similar carboxylate complexes (Liu et al., 2010; Su et al., 2005). For 3–methoxybenzoate anions, the plane of benzene ring and carboxylate group are nearly co–planar where the dihedral angle between the benzene ring and carboxylate plane is 5.2 (3)°. The water molecules are not coordinated to Cu and the distance between copper and water oxygen atoms is 4.019 (2) Å.

The molecules are linked via hydrogen bonds (O4–H41···O1, C12–H12A···O4, C11–H11A···O3) into one-dimensional supramolecular chains extending along the [100] direction, which are linked by hydrogen bonds (C5–H5A···O2) into two dimensional layers parallel to (100) (Fig. 2). The layers are arranged alternately in an ···ABAB···sequence and further assembled into there–dimensional network by hydrogen bonds (C10–H10A···O2).

Related literature top

For hydrogen bonds and crystal engineering, see: Aakeroy et al. (1993). For potential applications of transition metal complexes, see: Liu et al. (2007); Shibasaki et al. (2002). For six-coordinate metal–carboxylate compounds, see: Liu et al. (2010); Su et al. (2005).

Experimental top

CuCl2.2H2O (0.1705 g, 1.000 mmol) was successively added to 20 ml C2H5OH–H2O(1:1, v/v), 3–methoxybenzoate (0.1520 g, 1.000 mmol) and bipy (0.1569 g, 1.004 mmol) were subsequently added, then 1.4 ml (1 M) NaOH was added dropwise and stirred continuously for 1 h to give a blue suspension. After filtration, the blue filtrate (pH = 5.80) was allowed to stand at room temperature for several weeks to give blue block–shaped crystals

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound,with atom labels and 45% probability displacement ellipsoids for non-H atoms. Symmetry code for the symbol 'A': -x, y + 1, 0.5 - z.
[Figure 2] Fig. 2. The two-dimensional supramolecular layers of the title compound parallel to (100) showing O–H···O, C–H···O hydrogen bonds.
(2,2'-Bipyridine-κ2N,N')bis(3-methoxybenzoato- κ2O1,O1')copper(II) monohydrate top
Crystal data top
[Cu(C8H7O3)2(C10H8N2)]·H2OF(000) = 1116
Mr = 540.01Dx = 1.468 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12080 reflections
a = 19.888 (4) Åθ = 3.6–27.5°
b = 10.887 (2) ŵ = 0.94 mm1
c = 11.612 (2) ÅT = 293 K
β = 103.62 (3)°Block, blue
V = 2443.5 (8) Å30.1 × 0.1 × 0.1 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2796 independent reflections
Radiation source: fine-focus sealed tube2391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 2525
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.710, Tmax = 0.78l = 1514
12080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.7842P]
where P = (Fo2 + 2Fc2)/3
2796 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C8H7O3)2(C10H8N2)]·H2OV = 2443.5 (8) Å3
Mr = 540.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.888 (4) ŵ = 0.94 mm1
b = 10.887 (2) ÅT = 293 K
c = 11.612 (2) Å0.1 × 0.1 × 0.1 mm
β = 103.62 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2796 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2391 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.78Rint = 0.054
12080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
2796 reflectionsΔρmin = 0.39 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.52776 (3)0.75000.04304 (15)
O10.04555 (7)0.40392 (14)0.82712 (14)0.0539 (4)
O20.12489 (8)0.44707 (15)0.66421 (15)0.0598 (4)
O30.15000 (9)0.11263 (17)1.05759 (15)0.0669 (5)
N10.03034 (8)0.66715 (15)0.83787 (14)0.0426 (4)
C10.10582 (10)0.39069 (18)0.75900 (19)0.0470 (5)
C20.15286 (10)0.30133 (18)0.79947 (19)0.0475 (5)
C30.21724 (12)0.2726 (2)0.7265 (2)0.0611 (6)
H3A0.23170.30890.65230.073*
C40.25923 (13)0.1895 (3)0.7658 (3)0.0724 (7)
H4A0.30210.17020.71700.087*
C50.23949 (12)0.1344 (2)0.8754 (3)0.0646 (6)
H5A0.26880.07900.90030.078*
C60.17571 (11)0.16247 (19)0.9479 (2)0.0534 (5)
C70.13269 (10)0.24562 (19)0.9099 (2)0.0498 (5)
H7A0.08980.26430.95900.060*
C80.19197 (18)0.0270 (3)1.1014 (3)0.0818 (9)
H8A0.16740.00221.17770.123*
H8B0.20280.04101.04760.123*
H8C0.23400.06641.10850.123*
C90.06227 (11)0.6578 (2)0.92759 (18)0.0492 (5)
H9A0.07050.58020.95490.059*
C100.08304 (12)0.7594 (2)0.97979 (19)0.0557 (5)
H10A0.10550.75071.04110.067*
C110.07033 (13)0.8737 (2)0.9407 (2)0.0599 (6)
H11A0.08380.94340.97570.072*
C120.03730 (12)0.8849 (2)0.8490 (2)0.0552 (5)
H12A0.02820.96190.82150.066*
C130.01811 (10)0.77943 (18)0.79901 (17)0.0426 (4)
O40.00000.1586 (2)0.75000.0842 (8)
H410.01380.21090.79750.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0395 (2)0.0333 (2)0.0560 (2)0.0000.01071 (15)0.000
O10.0423 (8)0.0427 (8)0.0740 (10)0.0074 (6)0.0083 (7)0.0071 (7)
O20.0532 (9)0.0576 (9)0.0692 (10)0.0083 (7)0.0159 (8)0.0082 (8)
O30.0646 (10)0.0641 (11)0.0774 (11)0.0110 (8)0.0277 (9)0.0081 (8)
N10.0407 (9)0.0405 (9)0.0468 (9)0.0013 (7)0.0108 (7)0.0020 (6)
C10.0435 (11)0.0356 (10)0.0642 (12)0.0055 (8)0.0174 (9)0.0021 (9)
C20.0367 (10)0.0361 (10)0.0696 (13)0.0015 (8)0.0125 (9)0.0064 (9)
C30.0457 (12)0.0546 (13)0.0777 (15)0.0014 (10)0.0040 (11)0.0038 (11)
C40.0400 (12)0.0667 (16)0.103 (2)0.0126 (11)0.0024 (12)0.0111 (15)
C50.0459 (13)0.0512 (13)0.1009 (19)0.0111 (10)0.0258 (12)0.0081 (12)
C60.0478 (12)0.0425 (11)0.0754 (14)0.0041 (9)0.0254 (10)0.0069 (10)
C70.0383 (10)0.0447 (11)0.0671 (13)0.0052 (8)0.0135 (9)0.0048 (9)
C80.093 (2)0.0693 (19)0.098 (2)0.0154 (15)0.0526 (19)0.0040 (14)
C90.0461 (11)0.0513 (12)0.0508 (11)0.0028 (9)0.0127 (9)0.0042 (9)
C100.0557 (13)0.0657 (14)0.0502 (11)0.0017 (11)0.0211 (10)0.0018 (10)
C110.0696 (15)0.0536 (13)0.0614 (13)0.0079 (11)0.0255 (11)0.0082 (10)
C120.0679 (14)0.0386 (11)0.0629 (13)0.0042 (10)0.0232 (11)0.0006 (9)
C130.0430 (10)0.0384 (10)0.0462 (10)0.0013 (8)0.0100 (8)0.0011 (7)
O40.124 (3)0.0464 (14)0.0887 (18)0.0000.0370 (17)0.000
Geometric parameters (Å, º) top
Cu—O1i1.9551 (15)C5—C61.381 (3)
Cu—O11.9551 (15)C5—H5A0.9300
Cu—N1i1.9996 (16)C6—C71.387 (3)
Cu—N11.9996 (16)C7—H7A0.9300
O1—C11.279 (3)C8—H8A0.9600
O2—C11.239 (3)C8—H8B0.9600
O3—C61.368 (3)C8—H8C0.9600
O3—C81.423 (3)C9—C101.371 (3)
N1—C131.345 (2)C9—H9A0.9300
N1—C91.346 (3)C10—C111.369 (3)
C1—C21.500 (3)C10—H10A0.9300
C2—C71.390 (3)C11—C121.382 (3)
C2—C31.395 (3)C11—H11A0.9300
C3—C41.380 (4)C12—C131.380 (3)
C3—H3A0.9300C12—H12A0.9300
C4—C51.378 (4)C13—C13i1.483 (4)
C4—H4A0.9300O4—H410.8800
O1i—Cu—O192.80 (10)O3—C6—C7115.6 (2)
O1i—Cu—N1i93.53 (7)C5—C6—C7119.8 (2)
O1—Cu—N1i170.12 (6)C6—C7—C2120.8 (2)
O1i—Cu—N1170.12 (6)C6—C7—H7A119.6
O1—Cu—N193.53 (7)C2—C7—H7A119.6
N1i—Cu—N181.25 (9)O3—C8—H8A109.5
C1—O1—Cu105.20 (13)O3—C8—H8B109.5
C6—O3—C8118.1 (2)H8A—C8—H8B109.5
C13—N1—C9118.97 (17)O3—C8—H8C109.5
C13—N1—Cu114.74 (12)H8A—C8—H8C109.5
C9—N1—Cu126.27 (14)H8B—C8—H8C109.5
O2—C1—O1122.66 (19)N1—C9—C10121.83 (19)
O2—C1—C2121.1 (2)N1—C9—H9A119.1
O1—C1—C2116.23 (18)C10—C9—H9A119.1
C7—C2—C3119.2 (2)C11—C10—C9119.26 (19)
C7—C2—C1120.43 (19)C11—C10—H10A120.4
C3—C2—C1120.4 (2)C9—C10—H10A120.4
C4—C3—C2119.1 (2)C10—C11—C12119.6 (2)
C4—C3—H3A120.4C10—C11—H11A120.2
C2—C3—H3A120.4C12—C11—H11A120.2
C5—C4—C3121.9 (2)C13—C12—C11118.6 (2)
C5—C4—H4A119.1C13—C12—H12A120.7
C3—C4—H4A119.1C11—C12—H12A120.7
C4—C5—C6119.2 (2)N1—C13—C12121.68 (17)
C4—C5—H5A120.4N1—C13—C13i114.60 (10)
C6—C5—H5A120.4C12—C13—C13i123.71 (12)
O3—C6—C5124.6 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10.882.243.023 (3)147
C12—H12A···O4ii0.932.413.339 (3)178
C11—H11A···O3ii0.932.573.483 (3)166
C10—H10A···O2iii0.932.663.342 (3)131
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O3)2(C10H8N2)]·H2O
Mr540.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.888 (4), 10.887 (2), 11.612 (2)
β (°) 103.62 (3)
V3)2443.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.710, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
12080, 2796, 2391
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.05
No. of reflections2796
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.39

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond angles (º) top
O1i—Cu—O192.80 (10)O1—Cu—N193.53 (7)
O1—Cu—N1i170.12 (6)N1i—Cu—N181.25 (9)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O10.882.243.023 (3)147
C12—H12A···O4ii0.932.413.339 (3)178
C11—H11A···O3ii0.932.573.483 (3)166
C10—H10A···O2iii0.932.663.342 (3)131
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1/2.
 

Acknowledgements

This project was supported by the Education Department of Zhejiang Province and the scientific research fund of Nibong University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund, Ningbo University.

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, Y. L., Eubank, J. F., Cairns, A. J., Eckert, J., Kravtsov, V. C., Luebke, R. & Eddaoudi, M. (2007). Angew. Chem. Int. Ed. 46, 3278–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSu, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m379–m381.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds