metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[2-(morpholin-4-yl)ethanamine-κ2N,N′]cadmium

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 25 January 2011; accepted 28 January 2011; online 2 February 2011)

In the title compound, [CdCl2(C6H14N2O)2], the Cl and CdII atoms are located on a twofold rotation axis and the CdII atom is octa­hedrally coordinated by two N,N′-bidentate 2-(morpholin-4-yl)ethanamine ligands and two trans-located Cl atoms. In the crystal, adjacent mol­ecules are linked by N—H⋯Cl and C—H⋯O hydrogen bonds into a three-dimensional structure. An intra­molecular C—H⋯Cl hydrogen bond is also observed.

Related literature

For the structures of nickel(II) complexes with 4-(2-amino­eth­yl)morpholine (L), see: Chattopadhyay et al. (2005[Chattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677-1681.]); Laskar et al. (2001[Laskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. & Chaudhuri, N. R. (2001). Polyhedron, 20, 2073-2082.]). For the structures of other metal complexes with the ligand (L), see: Shi et al. (2006[Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719-m2720.]) and literature cited therein.

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C6H14N2O)2]

  • Mr = 443.68

  • Orthorhombic, P c c a

  • a = 19.6443 (2) Å

  • b = 10.6159 (1) Å

  • c = 8.3553 (1) Å

  • V = 1742.43 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.954

  • 20511 measured reflections

  • 2009 independent reflections

  • 1619 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.078

  • S = 1.28

  • 2009 reflections

  • 103 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.290 (3)
Cd1—N1 2.537 (3)
Cd1—Cl2 2.6244 (13)
Cd1—Cl1 2.6414 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl2i 0.88 (3) 2.54 (3) 3.344 (3) 152 (4)
N2—H2D⋯Cl1ii 0.90 (3) 2.46 (3) 3.333 (3) 161 (4)
C1—H1B⋯Cl1 0.99 2.80 3.540 (4) 132
C5—H5B⋯O1iii 0.99 2.57 3.509 (5) 158
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained upon complexation of 4-(2-aminoethyl)morpholine with CdCl2. Similar to what was observed in the other metal complexes of 4-(2-aminoethyl)morpholine (Chattopadhyay et al., 2005; Laskar et al., 2001), the morpholine ring adopts a chair conformation and the amine acts as an N,N'-bidentate ligand to form a five-membered chelate ring with the metal center. Within the formed chelate ring, the Cd—N distances are considerably different from one another (Table 1). By contrast, the Pt—N bond lenghts in the square-planar complex of PtCl2 with the amine ligand (Shi et al., 2006) are only slightly different [2.018 (6) and 2.075 (5) Å]. The CdII ion, placed on a 2-fold rotation axis, is six-coordinated by two of the amine ligands and two Cl atoms in a distorted octahedral geometry. The crystal structure is consolidated by intermolecular N—H···Cl and C—H···O and also intramolecular C—H···Cl hydrogen bonding interactions (Table 2).

Related literature top

For the structures of nickel(II) complexes with 4-(2-aminoethyl)morpholine (L), see: Chattopadhyay et al. (2005); Laskar et al. (2001). For the structures of other metal complexes with the ligand (L), see: Shi et al. (2006) and literature cited therein.

Experimental top

A solution of cadmium(II) chloride (0.92 g, 5.0 mmol) in minimum amount of water was added to an ethanolic solution (50 ml) of 4-(2-aminoethyl)morpholine (1.30 g, 10 mmol). The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a few days.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.99 Å) and were treated as riding on their parent atoms. The amine hydrogen atoms were located in a difference Fourier map and refined with a restrained N—H distance of 0.91 (3) Å. For all hydrogen atoms Uiso(H) were set to 1.2 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Unlabelled non-H atoms in the complex are related to labelled atoms by [1 - x, y, 1/2 - z].
Dichloridobis[2-(morpholin-4-yl)ethanamine-κ2N,N']cadmium top
Crystal data top
[CdCl2(C6H14N2O)2]F(000) = 904
Mr = 443.68Dx = 1.691 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 6671 reflections
a = 19.6443 (2) Åθ = 3.3–30.4°
b = 10.6159 (1) ŵ = 1.57 mm1
c = 8.3553 (1) ÅT = 100 K
V = 1742.43 (3) Å3Plate, colorless
Z = 40.18 × 0.16 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2009 independent reflections
Radiation source: fine-focus sealed tube1619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2524
Tmin = 0.765, Tmax = 0.954k = 1313
20511 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.28 w = 1/[σ2(Fo2) + (0.P)2 + 9.8151P]
where P = (Fo2 + 2Fc2)/3
2009 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 1.00 e Å3
2 restraintsΔρmin = 1.06 e Å3
Crystal data top
[CdCl2(C6H14N2O)2]V = 1742.43 (3) Å3
Mr = 443.68Z = 4
Orthorhombic, PccaMo Kα radiation
a = 19.6443 (2) ŵ = 1.57 mm1
b = 10.6159 (1) ÅT = 100 K
c = 8.3553 (1) Å0.18 × 0.16 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1619 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.954Rint = 0.026
20511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.28Δρmax = 1.00 e Å3
2009 reflectionsΔρmin = 1.06 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.74719 (3)0.25000.01253 (10)
Cl10.50000.49837 (12)0.25000.0181 (3)
Cl20.50000.99440 (12)0.25000.0173 (3)
O10.31029 (15)0.7816 (3)0.0516 (3)0.0249 (7)
N10.37113 (16)0.7319 (3)0.2563 (4)0.0182 (6)
N20.47563 (16)0.7529 (3)0.5179 (3)0.0112 (6)
H2C0.497 (2)0.815 (3)0.566 (5)0.013*
H2D0.491 (2)0.682 (3)0.565 (5)0.013*
C10.3397 (2)0.6315 (4)0.1558 (5)0.0213 (9)
H1A0.29160.61970.18780.026*
H1B0.36400.55090.17360.026*
C20.3431 (2)0.6660 (4)0.0196 (5)0.0256 (9)
H2A0.39130.67190.05290.031*
H2B0.32130.59860.08360.031*
C30.3403 (2)0.8793 (4)0.0428 (5)0.0212 (9)
H3A0.31660.95970.02060.025*
H3B0.38860.88950.01140.025*
C40.3365 (2)0.8516 (4)0.2191 (5)0.0213 (9)
H4A0.35830.92100.27960.026*
H4B0.28820.84650.25240.026*
C50.3615 (2)0.6927 (4)0.4264 (5)0.0217 (9)
H5A0.37530.60350.43830.026*
H5B0.31260.69900.45420.026*
C60.4020 (2)0.7721 (4)0.5403 (5)0.0210 (9)
H6A0.39090.86200.52300.025*
H6B0.38940.75010.65160.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01464 (18)0.01259 (17)0.01036 (17)0.0000.00092 (15)0.000
Cl10.0252 (7)0.0131 (5)0.0161 (6)0.0000.0003 (6)0.000
Cl20.0234 (6)0.0130 (5)0.0155 (6)0.0000.0011 (5)0.000
O10.0217 (15)0.0351 (17)0.0178 (14)0.0025 (13)0.0058 (12)0.0038 (13)
N10.0172 (14)0.0242 (17)0.0133 (14)0.0006 (13)0.0010 (13)0.0038 (16)
N20.0181 (14)0.0074 (13)0.0082 (13)0.0010 (12)0.0001 (11)0.0005 (12)
C10.0172 (19)0.0103 (17)0.036 (3)0.0043 (15)0.0047 (18)0.0025 (18)
C20.023 (2)0.028 (2)0.026 (2)0.0008 (18)0.0047 (18)0.0127 (19)
C30.018 (2)0.019 (2)0.026 (2)0.0005 (16)0.0020 (17)0.0088 (17)
C40.0158 (18)0.0178 (19)0.030 (2)0.0017 (15)0.0001 (17)0.0073 (17)
C50.023 (2)0.024 (2)0.017 (2)0.0008 (17)0.0024 (16)0.0048 (17)
C60.019 (2)0.032 (2)0.0114 (17)0.0013 (17)0.0030 (15)0.0007 (17)
Geometric parameters (Å, º) top
Cd1—N22.290 (3)C1—H1A0.9900
Cd1—N2i2.290 (3)C1—H1B0.9900
Cd1—N12.537 (3)C2—H2A0.9900
Cd1—N1i2.537 (3)C2—H2B0.9900
Cd1—Cl22.6244 (13)C3—C41.503 (6)
Cd1—Cl12.6414 (14)C3—H3A0.9900
O1—C21.411 (5)C3—H3B0.9900
O1—C31.430 (5)C4—H4A0.9900
N1—C41.475 (5)C4—H4B0.9900
N1—C11.490 (5)C5—C61.500 (6)
N1—C51.493 (5)C5—H5A0.9900
N2—C61.472 (5)C5—H5B0.9900
N2—H2C0.88 (3)C6—H6A0.9900
N2—H2D0.90 (3)C6—H6B0.9900
C1—C21.513 (6)
N2—Cd1—N2i176.95 (15)C2—C1—H1B109.5
N2—Cd1—N176.88 (11)H1A—C1—H1B108.1
N2i—Cd1—N1103.32 (11)O1—C2—C1112.0 (3)
N2—Cd1—N1i103.32 (11)O1—C2—H2A109.2
N2i—Cd1—N1i76.88 (11)C1—C2—H2A109.2
N1—Cd1—N1i172.65 (15)O1—C2—H2B109.2
N2—Cd1—Cl288.47 (8)C1—C2—H2B109.2
N2i—Cd1—Cl288.47 (8)H2A—C2—H2B107.9
N1—Cd1—Cl293.68 (8)O1—C3—C4112.2 (3)
N1i—Cd1—Cl293.68 (8)O1—C3—H3A109.2
N2—Cd1—Cl191.53 (8)C4—C3—H3A109.2
N2i—Cd1—Cl191.53 (8)O1—C3—H3B109.2
N1—Cd1—Cl186.32 (8)C4—C3—H3B109.2
N1i—Cd1—Cl186.32 (8)H3A—C3—H3B107.9
Cl2—Cd1—Cl1180.0N1—C4—C3110.6 (3)
C2—O1—C3109.8 (3)N1—C4—H4A109.5
C4—N1—C1107.9 (3)C3—C4—H4A109.5
C4—N1—C5112.5 (3)N1—C4—H4B109.5
C1—N1—C5106.5 (3)C3—C4—H4B109.5
C4—N1—Cd1113.6 (2)H4A—C4—H4B108.1
C1—N1—Cd1116.6 (2)N1—C5—C6112.4 (3)
C5—N1—Cd199.4 (2)N1—C5—H5A109.1
C6—N2—Cd1109.5 (2)C6—C5—H5A109.1
C6—N2—H2C108 (3)N1—C5—H5B109.1
Cd1—N2—H2C111 (3)C6—C5—H5B109.1
C6—N2—H2D113 (3)H5A—C5—H5B107.9
Cd1—N2—H2D110 (3)N2—C6—C5111.3 (3)
H2C—N2—H2D106 (4)N2—C6—H6A109.4
N1—C1—C2110.7 (3)C5—C6—H6A109.4
N1—C1—H1A109.5N2—C6—H6B109.4
C2—C1—H1A109.5C5—C6—H6B109.4
N1—C1—H1B109.5H6A—C6—H6B108.0
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl2ii0.88 (3)2.54 (3)3.344 (3)152 (4)
N2—H2D···Cl1iii0.90 (3)2.46 (3)3.333 (3)161 (4)
C1—H1B···Cl10.992.803.540 (4)132
C5—H5B···O1iv0.992.573.509 (5)158
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C6H14N2O)2]
Mr443.68
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)100
a, b, c (Å)19.6443 (2), 10.6159 (1), 8.3553 (1)
V3)1742.43 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.18 × 0.16 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
20511, 2009, 1619
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.078, 1.28
No. of reflections2009
No. of parameters103
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 1.06

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N22.290 (3)Cd1—Cl22.6244 (13)
Cd1—N12.537 (3)Cd1—Cl12.6414 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl2i0.88 (3)2.54 (3)3.344 (3)152 (4)
N2—H2D···Cl1ii0.90 (3)2.46 (3)3.333 (3)161 (4)
C1—H1B···Cl10.992.803.540 (4)132
C5—H5B···O1iii0.992.573.509 (5)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, T., Ghosh, M., Majee, A., Nethaji, M. & Das, D. (2005). Polyhedron, 24, 1677–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaskar, I. R., Maji, T. K., Das, D., Lu, T.-H., Wong, W.-T., Okamoto, K. & Chaudhuri, N. R. (2001). Polyhedron, 20, 2073–2082.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds