organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o569-o570

Redetermination of 3-methyl­benzoic acid

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Química, IQSC, Universidade de São Paulo, São Carlos, Brazil, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 26 January 2011; accepted 30 January 2011; online 5 February 2011)

The asymmetric unit of the title compound, C8H8O2, contains two crystallographically independent mol­ecules, which form dimers linked by O⋯H—O hydrogen bonds. The benzene rings in the dimers are inclined at a dihedral angle of 7.30 (8)° and both methyl groups display rotational disorder. This redetermination results in a crystal structure with significantly higher precision than the original determination [Ellas & García-Blanco (1963[Ellas, J. L. & García-Blanco, S. (1963). Acta Cryst. 16, 434.]). Acta Cryst. 16, 434], in which the authors reported only the unit-cell parameters and space group, without any detailed information on the atomic arrangement. In the crystal, dimers are connected by weak C—H⋯O inter­actions, forming R22(10) and R44(18) rings along [110] and an infinite zigzag chain of dimers along the [001] direction also occurs.

Related literature

For a report of the unit-cell dimensions and space group of the title compound, see: Ellas & García-Blanco (1963[Ellas, J. L. & García-Blanco, S. (1963). Acta Cryst. 16, 434.]). For comparisons with other hydrogen-bond donors, see: Moreno-Fuquen et al. (1997[Moreno-Fuquen, R., de Almeida Santos, R. H. & do Prado Gambardella, M. T. (1997). Acta Cryst. C53, 1634-1635.], 2009[Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009). Acta Cryst. E65, o1680-o1681.], 2011[Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.]). For related structures, see: Barcon et al. (1997[Barcon, A., Coté, M. L., Brunskill, A. P. J., Thompson, H. W. & Lalancette, R. A. (1997). Acta Cryst. C53, 1842-1845.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a structural discussion of hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 350-362. New York: Oxford University Press.]). For general analysis of inter­molecular inter­actions, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for graph-set notation of hydrogen-bond patterns, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8O2

  • Mr = 136.14

  • Monoclinic, P 21 /c

  • a = 10.3693 (9) Å

  • b = 8.1844 (7) Å

  • c = 16.4715 (17) Å

  • β = 92.836 (9)°

  • V = 1396.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.22 × 0.18 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • 13219 measured reflections

  • 3705 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 0.83

  • 3705 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1H⋯O4 0.984 (18) 1.634 (19) 2.6149 (16) 173.7 (16)
O3—H2H⋯O2 0.998 (19) 1.623 (19) 2.6205 (16) 177.6 (16)
C7—H7⋯O1i 0.95 2.70 3.4520 (18) 137
C16—H16E⋯O1ii 0.98 2.54 3.448 (2) 154
C14—H14⋯O2iii 0.95 2.67 3.460 (2) 141
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED; data reduction: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) was investigated in a continuation of our studies on the formation of molecular complexes from N-oxide derivatives with different hydrogen bond donors (Moreno-Fuquen et al., 1997, 2009, 2011). The structure of a similar molecule was taken to compare with the title molecule (Barcon et al., 1997). A perspective view of the dimeric hydrogen-bonding in (I), showing the atomic numbering scheme, is given in Figure 1. Both molecules of m-toluic acid are held together by intermolecular O···H—O hydrogen bonds of moderate character (Desiraju & Steiner, 1999). Indeed, carbonylic O4 and O2 atoms are linked to O1 and O3 atoms with O···O distances of 2.6149 (16) and 2.6205 (16)Å respectively. The two aromatic rings in (I) form a dihedral angle of 7.30 (8)°. Both methyl groups display rotational disorder. The rotamer ratio found in this modeling was 50:50. In (I), Fig. 1, bond lengths and bond angles are in normal ranges (Allen et al., 1987). The title crystal structure also exhibits other weak C—H···O interactions (see Table 1, Nardelli, 1995). Indeed, in a first substructure, atom C7 acts as hydrogen bond donor to O1i in the molecule at (-x + 1,-y + 1,-z) and the C16 atom acts as hydrogen bond donor to O1ii in the molecule at (-x + 2,-y + 2,-z). The propagation of these interactions generates rings with graph-set notation R22(10) and R44(18) (Etter, 1990), running along the [110] direction (see Fig. 2). In a second substructure, atom C14 acts as a hydrogen bond donor to O2iii in the molecule at (x,-y + 1/2 + 1,+z - 1/2). The propagation of this interaction forms an infinite zigzag chain of dimers along the [001] direction (see Fig. 3). All of these interactions in the [110] and [001] directions define the bulk structure of the crystal.

Related literature top

For a report of the unit-cell dimensions and space group of the title compound, see: Ellas & García-Blanco (1963). For comparisons with other hydrogen-bond donors, see: Moreno-Fuquen et al. (1997, 2009, 2011). For related structures, see: Barcon et al. (1997). For bond-length data, see: Allen et al. (1987). For a structural discussion of hydrogen bonding, see: Desiraju & Steiner (1999). For general analysis of intermolecular interactions, see: Nardelli (1995) and for graph-set notation of hydrogen-bond patterns, see: Etter (1990).

Experimental top

3-Methylbenzoic acid (0.545 g, 4 mmol) (Aldrich) was disssolved in ethanol (200 ml). The solution was left to evaporate slowly at room temperature. After three days, colourless crystals of a good quality suitable for X-ray analysis were obtained. M. p. 383 (1) K

Refinement top

All non-hydrogen atoms were identified by direct methods. All H atoms were observed in a difference Fourier map. The H-atoms in (I) were placed geometrically [C—H= 0.95 Å for aromatic, C—H= 0.98 Å for methyl, Uiso(H) (1.2 and 1.5 times Ueq of the parent atom respectivelly]. The coordinates of the H1H and H2H hydroxyl H atoms were refined.

Computing details top

Data collection: CrysAlis RED (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. H bonds are drawn as open dashed lines and only one component of the disordered methyl groups is shown.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(10) and R44(18) rings, running along [110]. H bonds are drawn as dashed lines. Symmetry codes: (i) -x + 1, -y + 1,-z; (ii) -x + 2,-y + 2,-z.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an infinite zigzag chain of dimers along the [001] direction. H bonds are drawn as dashed lines. Symmetry code: (iii) x,-y + 1/2 + 1,+z - 1/2.
3-methylbenzoic acid top
Crystal data top
C8H8O2F(000) = 576
Mr = 136.14Dx = 1.295 Mg m3
Monoclinic, P21/cMelting point: 383(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.3693 (9) ÅCell parameters from 2724 reflections
b = 8.1844 (7) Åθ = 2.5–31.0°
c = 16.4715 (17) ŵ = 0.09 mm1
β = 92.836 (9)°T = 123 K
V = 1396.2 (2) Å3Tablet, colourless
Z = 80.22 × 0.18 × 0.06 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
1898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 29.0°, θmin = 2.8°
ω scansh = 1214
13219 measured reflectionsk = 1111
3705 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0487P)2]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H8O2V = 1396.2 (2) Å3
Mr = 136.14Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.3693 (9) ŵ = 0.09 mm1
b = 8.1844 (7) ÅT = 123 K
c = 16.4715 (17) Å0.22 × 0.18 × 0.06 mm
β = 92.836 (9)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
1898 reflections with I > 2σ(I)
13219 measured reflectionsRint = 0.055
3705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.23 e Å3
3705 reflectionsΔρmin = 0.26 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.71126 (10)0.51712 (14)0.01320 (7)0.0292 (3)
H1H0.7709 (16)0.584 (2)0.0173 (11)0.044*
O20.86464 (10)0.53282 (13)0.11340 (7)0.0282 (3)
O31.01280 (11)0.71203 (14)0.02472 (7)0.0305 (3)
H2H0.9547 (16)0.646 (2)0.0585 (11)0.046*
O40.85611 (10)0.70355 (14)0.07354 (7)0.0331 (3)
C10.75522 (14)0.48677 (17)0.08633 (9)0.0210 (3)
C20.66970 (14)0.39351 (17)0.13857 (9)0.0206 (3)
C30.71441 (14)0.34920 (18)0.21672 (9)0.0224 (4)
H30.79860.38120.23570.027*
C40.63808 (15)0.25912 (19)0.26726 (10)0.0261 (4)
C50.51487 (15)0.2154 (2)0.23776 (10)0.0285 (4)
H50.46130.15290.27110.034*
C60.46861 (15)0.2611 (2)0.16069 (10)0.0290 (4)
H60.38360.23140.14220.035*
C70.54596 (14)0.35009 (18)0.11062 (10)0.0247 (4)
H70.51460.38110.05770.030*
C80.68850 (17)0.2078 (2)0.35071 (10)0.0404 (5)
H8A0.62180.14560.37740.061*0.50
H8B0.71110.30500.38310.061*0.50
H8C0.76530.13940.34600.061*0.50
H8D0.77700.24780.36020.061*0.50
H8E0.68770.08830.35450.061*0.50
H8F0.63350.25390.39170.061*0.50
C90.96396 (14)0.75391 (18)0.04584 (10)0.0229 (4)
C101.04204 (14)0.86537 (18)0.09412 (10)0.0217 (3)
C111.15930 (14)0.92586 (18)0.06163 (10)0.0236 (4)
H111.18800.89600.00800.028*
C121.23462 (14)1.02899 (18)0.10643 (10)0.0244 (4)
C131.19025 (15)1.07092 (19)0.18470 (10)0.0284 (4)
H131.24081.14150.21610.034*
C141.07403 (15)1.01207 (19)0.21794 (10)0.0287 (4)
H141.04541.04250.27150.034*
C150.99964 (14)0.90856 (19)0.17276 (10)0.0256 (4)
H150.92010.86730.19540.031*
C161.36251 (15)1.0906 (2)0.07154 (11)0.0331 (4)
H16A1.40201.16160.11120.050*0.50
H16B1.41970.99770.05890.050*0.50
H16C1.34911.15250.02170.050*0.50
H16D1.37851.04620.01670.050*0.50
H16E1.36081.21020.06900.050*0.50
H16F1.43151.05540.10620.050*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (6)0.0374 (7)0.0211 (6)0.0020 (5)0.0018 (5)0.0040 (6)
O20.0249 (6)0.0303 (6)0.0290 (7)0.0045 (5)0.0046 (5)0.0047 (5)
O30.0291 (6)0.0339 (6)0.0284 (7)0.0014 (5)0.0009 (5)0.0092 (6)
O40.0247 (6)0.0380 (7)0.0361 (7)0.0051 (5)0.0029 (5)0.0029 (6)
C10.0227 (8)0.0188 (7)0.0215 (9)0.0042 (7)0.0000 (7)0.0023 (7)
C20.0220 (8)0.0183 (7)0.0217 (9)0.0024 (6)0.0012 (7)0.0023 (7)
C30.0185 (8)0.0257 (8)0.0227 (9)0.0011 (6)0.0023 (7)0.0022 (7)
C40.0267 (8)0.0276 (9)0.0240 (9)0.0012 (7)0.0004 (7)0.0004 (7)
C50.0257 (9)0.0313 (9)0.0287 (10)0.0030 (7)0.0042 (8)0.0013 (8)
C60.0221 (8)0.0331 (9)0.0314 (10)0.0015 (7)0.0032 (7)0.0025 (8)
C70.0247 (8)0.0262 (8)0.0228 (9)0.0023 (7)0.0030 (7)0.0006 (7)
C80.0397 (11)0.0515 (12)0.0292 (10)0.0039 (9)0.0047 (9)0.0111 (9)
C90.0223 (8)0.0219 (8)0.0242 (9)0.0032 (7)0.0020 (7)0.0007 (7)
C100.0212 (8)0.0188 (7)0.0251 (9)0.0033 (6)0.0015 (7)0.0002 (7)
C110.0242 (8)0.0231 (8)0.0233 (9)0.0057 (7)0.0015 (7)0.0004 (7)
C120.0227 (8)0.0221 (8)0.0283 (9)0.0034 (7)0.0005 (7)0.0029 (7)
C130.0285 (9)0.0240 (8)0.0331 (10)0.0019 (7)0.0038 (8)0.0044 (8)
C140.0301 (9)0.0295 (9)0.0261 (9)0.0030 (7)0.0025 (8)0.0049 (8)
C150.0216 (8)0.0246 (8)0.0300 (10)0.0005 (7)0.0040 (7)0.0008 (7)
C160.0280 (9)0.0316 (9)0.0396 (11)0.0023 (8)0.0012 (8)0.0030 (8)
Geometric parameters (Å, º) top
O1—C11.2909 (17)C8—H8D0.9800
O1—H1H0.984 (18)C8—H8E0.9800
O2—C11.2562 (17)C8—H8F0.9800
O3—C91.2911 (18)C9—C101.478 (2)
O3—H2H0.998 (19)C10—C151.393 (2)
O4—C91.2563 (16)C10—C111.395 (2)
C1—C21.478 (2)C11—C121.387 (2)
C2—C71.3878 (19)C11—H110.9500
C2—C31.394 (2)C12—C131.390 (2)
C3—C41.389 (2)C12—C161.506 (2)
C3—H30.9500C13—C141.385 (2)
C4—C51.391 (2)C13—H130.9500
C4—C81.506 (2)C14—C151.387 (2)
C5—C61.386 (2)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C71.385 (2)C16—H16A0.9800
C6—H60.9500C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C8—H8A0.9800C16—H16D0.9800
C8—H8B0.9800C16—H16E0.9800
C8—H8C0.9800C16—H16F0.9800
C1—O1—H1H112.5 (10)H8E—C8—H8F109.5
C9—O3—H2H115.1 (10)O4—C9—O3122.84 (15)
O2—C1—O1122.99 (14)O4—C9—C10120.58 (14)
O2—C1—C2120.38 (13)O3—C9—C10116.58 (13)
O1—C1—C2116.63 (13)C15—C10—C11119.73 (14)
C7—C2—C3119.96 (14)C15—C10—C9120.06 (14)
C7—C2—C1120.70 (13)C11—C10—C9120.20 (14)
C3—C2—C1119.34 (13)C12—C11—C10121.00 (14)
C4—C3—C2121.21 (14)C12—C11—H11119.5
C4—C3—H3119.4C10—C11—H11119.5
C2—C3—H3119.4C11—C12—C13118.31 (14)
C3—C4—C5117.90 (14)C11—C12—C16120.61 (14)
C3—C4—C8120.86 (14)C13—C12—C16121.07 (15)
C5—C4—C8121.23 (15)C14—C13—C12121.48 (15)
C6—C5—C4121.38 (16)C14—C13—H13119.3
C6—C5—H5119.3C12—C13—H13119.3
C4—C5—H5119.3C13—C14—C15119.76 (15)
C7—C6—C5120.18 (15)C13—C14—H14120.1
C7—C6—H6119.9C15—C14—H14120.1
C5—C6—H6119.9C14—C15—C10119.71 (14)
C6—C7—C2119.35 (14)C14—C15—H15120.1
C6—C7—H7120.3C10—C15—H15120.1
C2—C7—H7120.3C12—C16—H16A109.5
C4—C8—H8A109.5C12—C16—H16B109.5
C4—C8—H8B109.5H16A—C16—H16B109.5
H8A—C8—H8B109.5C12—C16—H16C109.5
C4—C8—H8C109.5H16A—C16—H16C109.5
H8A—C8—H8C109.5H16B—C16—H16C109.5
H8B—C8—H8C109.5C12—C16—H16D109.5
C4—C8—H8D109.5H16A—C16—H16D141.1
H8A—C8—H8D141.1H16B—C16—H16D56.3
H8B—C8—H8D56.3H16C—C16—H16D56.3
H8C—C8—H8D56.3C12—C16—H16E109.5
C4—C8—H8E109.5H16A—C16—H16E56.3
H8A—C8—H8E56.3H16B—C16—H16E141.1
H8B—C8—H8E141.1H16C—C16—H16E56.3
H8C—C8—H8E56.3H16D—C16—H16E109.5
H8D—C8—H8E109.5C12—C16—H16F109.5
C4—C8—H8F109.5H16A—C16—H16F56.3
H8A—C8—H8F56.3H16B—C16—H16F56.3
H8B—C8—H8F56.3H16C—C16—H16F141.1
H8C—C8—H8F141.1H16D—C16—H16F109.5
H8D—C8—H8F109.5H16E—C16—H16F109.5
O2—C1—C2—C7176.39 (14)O4—C9—C10—C153.5 (2)
O1—C1—C2—C73.5 (2)O3—C9—C10—C15176.20 (14)
O2—C1—C2—C33.6 (2)O4—C9—C10—C11177.45 (14)
O1—C1—C2—C3176.54 (13)O3—C9—C10—C112.9 (2)
C7—C2—C3—C41.2 (2)C15—C10—C11—C120.1 (2)
C1—C2—C3—C4178.85 (14)C9—C10—C11—C12179.20 (14)
C2—C3—C4—C50.5 (2)C10—C11—C12—C130.1 (2)
C2—C3—C4—C8178.29 (15)C10—C11—C12—C16178.59 (14)
C3—C4—C5—C60.6 (2)C11—C12—C13—C140.0 (2)
C8—C4—C5—C6179.39 (16)C16—C12—C13—C14178.60 (15)
C4—C5—C6—C71.0 (2)C12—C13—C14—C150.2 (2)
C5—C6—C7—C20.3 (2)C13—C14—C15—C100.4 (2)
C3—C2—C7—C60.8 (2)C11—C10—C15—C140.4 (2)
C1—C2—C7—C6179.30 (14)C9—C10—C15—C14179.42 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O40.984 (18)1.634 (19)2.6149 (16)173.7 (16)
O3—H2H···O20.998 (19)1.623 (19)2.6205 (16)177.6 (16)
C7—H7···O1i0.952.703.4520 (18)137
C16—H16E···O1ii0.982.543.448 (2)154
C14—H14···O2iii0.952.673.460 (2)141
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H8O2
Mr136.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)10.3693 (9), 8.1844 (7), 16.4715 (17)
β (°) 92.836 (9)
V3)1396.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13219, 3705, 1898
Rint0.055
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 0.83
No. of reflections3705
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CrysAlis RED (Oxford Diffraction, 2009), CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1H···O40.984 (18)1.634 (19)2.6149 (16)173.7 (16)
O3—H2H···O20.998 (19)1.623 (19)2.6205 (16)177.6 (16)
C7—H7···O1i0.952.703.4520 (18)137
C16—H16E···O1ii0.982.543.448 (2)154
C14—H14···O2iii0.952.673.460 (2)141
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarcon, A., Coté, M. L., Brunskill, A. P. J., Thompson, H. W. & Lalancette, R. A. (1997). Acta Cryst. C53, 1842–1845.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 350–362. New York: Oxford University Press.  Google Scholar
First citationEllas, J. L. & García-Blanco, S. (1963). Acta Cryst. 16, 434.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., de Almeida Santos, R. H. & do Prado Gambardella, M. T. (1997). Acta Cryst. C53, 1634–1635.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009). Acta Cryst. E65, o1680–o1681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o569-o570
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds